Decentralized federated learning: Fundamentals, state of the art, frameworks, trends, and challenges

ETM Beltrán, MQ Pérez, PMS Sánchez… - … Surveys & Tutorials, 2023 - ieeexplore.ieee.org
In recent years, Federated Learning (FL) has gained relevance in training collaborative
models without sharing sensitive data. Since its birth, Centralized FL (CFL) has been the …

A survey on federated learning: challenges and applications

J Wen, Z Zhang, Y Lan, Z Cui, J Cai… - International Journal of …, 2023 - Springer
Federated learning (FL) is a secure distributed machine learning paradigm that addresses
the issue of data silos in building a joint model. Its unique distributed training mode and the …

Deep learning: systematic review, models, challenges, and research directions

T Talaei Khoei, H Ould Slimane… - Neural Computing and …, 2023 - Springer
The current development in deep learning is witnessing an exponential transition into
automation applications. This automation transition can provide a promising framework for …

Vertical federated learning: Concepts, advances, and challenges

Y Liu, Y Kang, T Zou, Y Pu, Y He, X Ye… - … on Knowledge and …, 2024 - ieeexplore.ieee.org
Vertical Federated Learning (VFL) is a federated learning setting where multiple parties with
different features about the same set of users jointly train machine learning models without …

Recent advances on federated learning for cybersecurity and cybersecurity for federated learning for internet of things

B Ghimire, DB Rawat - IEEE Internet of Things Journal, 2022 - ieeexplore.ieee.org
Decentralized paradigm in the field of cybersecurity and machine learning (ML) for the
emerging Internet of Things (IoT) has gained a lot of attention from the government …

Federatedscope-llm: A comprehensive package for fine-tuning large language models in federated learning

W Kuang, B Qian, Z Li, D Chen, D Gao, X Pan… - Proceedings of the 30th …, 2024 - dl.acm.org
Large language models (LLMs) have demonstrated great capabilities in various natural
language understanding and generation tasks. These pre-trained LLMs can be further …

Federated learning on non-IID data: A survey

H Zhu, J Xu, S Liu, Y ** - Neurocomputing, 2021 - Elsevier
Federated learning is an emerging distributed machine learning framework for privacy
preservation. However, models trained in federated learning usually have worse …

A comprehensive survey of privacy-preserving federated learning: A taxonomy, review, and future directions

X Yin, Y Zhu, J Hu - ACM Computing Surveys (CSUR), 2021 - dl.acm.org
The past four years have witnessed the rapid development of federated learning (FL).
However, new privacy concerns have also emerged during the aggregation of the …

A survey on federated learning for resource-constrained IoT devices

A Imteaj, U Thakker, S Wang, J Li… - IEEE Internet of Things …, 2021 - ieeexplore.ieee.org
Federated learning (FL) is a distributed machine learning strategy that generates a global
model by learning from multiple decentralized edge clients. FL enables on-device training …

A survey on federated learning

C Zhang, Y **e, H Bai, B Yu, W Li, Y Gao - Knowledge-Based Systems, 2021 - Elsevier
Federated learning is a set-up in which multiple clients collaborate to solve machine
learning problems, which is under the coordination of a central aggregator. This setting also …