Biomedical question answering: a survey of approaches and challenges
Automatic Question Answering (QA) has been successfully applied in various domains such
as search engines and chatbots. Biomedical QA (BQA), as an emerging QA task, enables …
as search engines and chatbots. Biomedical QA (BQA), as an emerging QA task, enables …
Information retrieval: recent advances and beyond
This paper provides an extensive and thorough overview of the models and techniques
utilized in the first and second stages of the typical information retrieval processing chain …
utilized in the first and second stages of the typical information retrieval processing chain …
Promptagator: Few-shot dense retrieval from 8 examples
Much recent research on information retrieval has focused on how to transfer from one task
(typically with abundant supervised data) to various other tasks where supervision is limited …
(typically with abundant supervised data) to various other tasks where supervision is limited …
[LIBRO][B] Pretrained transformers for text ranking: Bert and beyond
The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in
response to a query. Although the most common formulation of text ranking is search …
response to a query. Although the most common formulation of text ranking is search …
A deep look into neural ranking models for information retrieval
Ranking models lie at the heart of research on information retrieval (IR). During the past
decades, different techniques have been proposed for constructing ranking models, from …
decades, different techniques have been proposed for constructing ranking models, from …
PARADE: Passage Representation Aggregation forDocument Reranking
Pre-trained transformer models, such as BERT and T5, have shown to be highly effective at
ad hoc passage and document ranking. Due to the inherent sequence length limits of these …
ad hoc passage and document ranking. Due to the inherent sequence length limits of these …
Rethinking search: making domain experts out of dilettantes
When experiencing an information need, users want to engage with a domain expert, but
often turn to an information retrieval system, such as a search engine, instead. Classical …
often turn to an information retrieval system, such as a search engine, instead. Classical …
An introduction to neural information retrieval
Neural ranking models for information retrieval (IR) use shallow or deep neural networks to
rank search results in response to a query. Traditional learning to rank models employ …
rank search results in response to a query. Traditional learning to rank models employ …
Simple applications of BERT for ad hoc document retrieval
Following recent successes in applying BERT to question answering, we explore simple
applications to ad hoc document retrieval. This required confronting the challenge posed by …
applications to ad hoc document retrieval. This required confronting the challenge posed by …
Prop: Pre-training with representative words prediction for ad-hoc retrieval
Recently pre-trained language representation models such as BERT have shown great
success when fine-tuned on downstream tasks including information retrieval (IR). However …
success when fine-tuned on downstream tasks including information retrieval (IR). However …