[HTML][HTML] A review of uncertainty quantification in deep learning: Techniques, applications and challenges
Uncertainty quantification (UQ) methods play a pivotal role in reducing the impact of
uncertainties during both optimization and decision making processes. They have been …
uncertainties during both optimization and decision making processes. They have been …
Deep semantic segmentation of natural and medical images: a review
The semantic image segmentation task consists of classifying each pixel of an image into an
instance, where each instance corresponds to a class. This task is a part of the concept of …
instance, where each instance corresponds to a class. This task is a part of the concept of …
Segmenter: Transformer for semantic segmentation
Image segmentation is often ambiguous at the level of individual image patches and
requires contextual information to reach label consensus. In this paper we introduce …
requires contextual information to reach label consensus. In this paper we introduce …
Deep high-resolution representation learning for visual recognition
High-resolution representations are essential for position-sensitive vision problems, such as
human pose estimation, semantic segmentation, and object detection. Existing state-of-the …
human pose estimation, semantic segmentation, and object detection. Existing state-of-the …
Deep high-resolution representation learning for human pose estimation
In this paper, we are interested in the human pose estimation problem with a focus on
learning reliable high-resolution representations. Most existing methods recover high …
learning reliable high-resolution representations. Most existing methods recover high …
Unet++: Redesigning skip connections to exploit multiscale features in image segmentation
The state-of-the-art models for medical image segmentation are variants of U-Net and fully
convolutional networks (FCN). Despite their success, these models have two limitations:(1) …
convolutional networks (FCN). Despite their success, these models have two limitations:(1) …
Encoder-decoder with atrous separable convolution for semantic image segmentation
Spatial pyramid pooling module or encode-decoder structure are used in deep neural
networks for semantic segmentation task. The former networks are able to encode multi …
networks for semantic segmentation task. The former networks are able to encode multi …
Objects as points
Detection identifies objects as axis-aligned boxes in an image. Most successful object
detectors enumerate a nearly exhaustive list of potential object locations and classify each …
detectors enumerate a nearly exhaustive list of potential object locations and classify each …
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
In this work we address the task of semantic image segmentation with Deep Learning and
make three main contributions that are experimentally shown to have substantial practical …
make three main contributions that are experimentally shown to have substantial practical …
Bisenet v2: Bilateral network with guided aggregation for real-time semantic segmentation
Low-level details and high-level semantics are both essential to the semantic segmentation
task. However, to speed up the model inference, current approaches almost always sacrifice …
task. However, to speed up the model inference, current approaches almost always sacrifice …