Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Self-supervised learning in medicine and healthcare
The development of medical applications of machine learning has required manual
annotation of data, often by medical experts. Yet, the availability of large-scale unannotated …
annotation of data, often by medical experts. Yet, the availability of large-scale unannotated …
Self-supervised contrastive learning for medical time series: A systematic review
Medical time series are sequential data collected over time that measures health-related
signals, such as electroencephalography (EEG), electrocardiography (ECG), and intensive …
signals, such as electroencephalography (EEG), electrocardiography (ECG), and intensive …
Self-supervised learning for electroencephalography
Decades of research have shown machine learning superiority in discovering highly
nonlinear patterns embedded in electroencephalography (EEG) records compared with …
nonlinear patterns embedded in electroencephalography (EEG) records compared with …
Augmentation-free self-supervised learning on graphs
Inspired by the recent success of self-supervised methods applied on images, self-
supervised learning on graph structured data has seen rapid growth especially centered on …
supervised learning on graph structured data has seen rapid growth especially centered on …
BENDR: Using transformers and a contrastive self-supervised learning task to learn from massive amounts of EEG data
Deep neural networks (DNNs) used for brain–computer interface (BCI) classification are
commonly expected to learn general features when trained across a variety of contexts, such …
commonly expected to learn general features when trained across a variety of contexts, such …
[HTML][HTML] Self-supervised representation learning from 12-lead ECG data
Abstract Clinical 12-lead electrocardiography (ECG) is one of the most widely encountered
kinds of biosignals. Despite the increased availability of public ECG datasets, label scarcity …
kinds of biosignals. Despite the increased availability of public ECG datasets, label scarcity …
Uncovering the structure of clinical EEG signals with self-supervised learning
Objective. Supervised learning paradigms are often limited by the amount of labeled data
that is available. This phenomenon is particularly problematic in clinically-relevant data …
that is available. This phenomenon is particularly problematic in clinically-relevant data …
[HTML][HTML] Mixing up contrastive learning: Self-supervised representation learning for time series
The lack of labeled data is a key challenge for learning useful representation from time
series data. However, an unsupervised representation framework that is capable of …
series data. However, an unsupervised representation framework that is capable of …
Exploring convolutional neural network architectures for EEG feature extraction
The main purpose of this paper is to provide information on how to create a convolutional
neural network (CNN) for extracting features from EEG signals. Our task was to understand …
neural network (CNN) for extracting features from EEG signals. Our task was to understand …
Brant: Foundation model for intracranial neural signal
We propose a foundation model named Brant for modeling intracranial recordings, which
learns powerful representations of intracranial neural signals by pre-training, providing a …
learns powerful representations of intracranial neural signals by pre-training, providing a …