[BOOK][B] Finite element methods for eigenvalue problems

J Sun, A Zhou - 2016 - taylorfrancis.com
This book covers finite element methods for several typical eigenvalues that arise from
science and engineering. Both theory and implementation are covered in depth at the …

Higher-order adaptive finite-element methods for Kohn–Sham density functional theory

P Motamarri, MR Nowak, K Leiter, J Knap… - Journal of Computational …, 2013 - Elsevier
We present an efficient computational approach to perform real-space electronic structure
calculations using an adaptive higher-order finite-element discretization of Kohn–Sham …

An overview of a posteriori error estimation and post-processing methods for nonlinear eigenvalue problems

G Dusson, Y Maday - Journal of Computational Physics, 2023 - Elsevier
In this article, we present an overview of different a posteriori error analysis and post-
processing methods proposed in the context of nonlinear eigenvalue problems, eg arising in …

A multigrid method for eigenvalue problem

H **e - Journal of Computational Physics, 2014 - Elsevier
A multigrid method is proposed to solve the eigenvalue problem by the finite element
method based on the combination of the multilevel correction scheme for the eigenvalue …

Sobolev gradient flow for the Gross--Pitaevskii eigenvalue problem: Global convergence and computational efficiency

P Henning, D Peterseim - SIAM Journal on Numerical Analysis, 2020 - SIAM
We propose a new normalized Sobolev gradient flow for the Gross--Pitaevskii eigenvalue
problem based on an energy inner product that depends on time through the density of the …

Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models

E Cancès, R Chakir, Y Maday - ESAIM: Mathematical Modelling and …, 2012 - cambridge.org
In this article, we provide a priori error estimates for the spectral and pseudospectral Fourier
(also called planewave) discretizations of the periodic Thomas-Fermi-von Weizsäcker (TFW) …

The J-method for the Gross–Pitaevskii eigenvalue problem

R Altmann, P Henning, D Peterseim - Numerische Mathematik, 2021 - Springer
This paper studies the J-method of [E. Jarlebring, S. Kvaal, W. Michiels. SIAM J. Sci. Comput.
36-4: A1978-A2001, 2014] for nonlinear eigenvector problems in a general Hilbert space …

Gradient type optimization methods for electronic structure calculations

X Zhang, J Zhu, Z Wen, A Zhou - SIAM Journal on Scientific Computing, 2014 - SIAM
The density functional theory (DFT) in electronic structure calculations can be formulated as
either a nonlinear eigenvalue or a direct minimization problem. The most widely used …

Two-level discretization techniques for ground state computations of Bose-Einstein condensates

P Henning, A Målqvist, D Peterseim - SIAM Journal on Numerical Analysis, 2014 - SIAM
This work presents a new methodology for computing ground states of Bose--Einstein
condensates based on finite element discretizations on two different scales of numerical …

A full multigrid method for nonlinear eigenvalue problems

SH Jia, HH **e, MT **e, F Xu - Science China Mathematics, 2016 - Springer
We introduce a type of full multigrid method for the nonlinear eigenvalue problem. The main
idea is to transform the solution of the nonlinear eigenvalue problem into a series of …