Medical image segmentation review: The success of u-net

R Azad, EK Aghdam, A Rauland, Y Jia… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
Automatic medical image segmentation is a crucial topic in the medical domain and
successively a critical counterpart in the computer-aided diagnosis paradigm. U-Net is the …

Machine learning for medical imaging: methodological failures and recommendations for the future

G Varoquaux, V Cheplygina - NPJ digital medicine, 2022 - nature.com
Research in computer analysis of medical images bears many promises to improve patients'
health. However, a number of systematic challenges are slowing down the progress of the …

Federated benchmarking of medical artificial intelligence with MedPerf

A Karargyris, R Umeton, MJ Sheller… - Nature machine …, 2023 - nature.com
Medical artificial intelligence (AI) has tremendous potential to advance healthcare by
supporting and contributing to the evidence-based practice of medicine, personalizing …

Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge

W Bulten, K Kartasalo, PHC Chen, P Ström… - Nature medicine, 2022 - nature.com
Artificial intelligence (AI) has shown promise for diagnosing prostate cancer in biopsies.
However, results have been limited to individual studies, lacking validation in multinational …

The multimodality cell segmentation challenge: toward universal solutions

J Ma, R **e, S Ayyadhury, C Ge, A Gupta, R Gupta… - Nature …, 2024 - nature.com
Cell segmentation is a critical step for quantitative single-cell analysis in microscopy images.
Existing cell segmentation methods are often tailored to specific modalities or require …

The medical segmentation decathlon

M Antonelli, A Reinke, S Bakas, K Farahani… - Nature …, 2022 - nature.com
International challenges have become the de facto standard for comparative assessment of
image analysis algorithms. Although segmentation is the most widely investigated medical …

Understanding metric-related pitfalls in image analysis validation

A Reinke, MD Tizabi, M Baumgartner, M Eisenmann… - Nature …, 2024 - nature.com
Validation metrics are key for tracking scientific progress and bridging the current chasm
between artificial intelligence research and its translation into practice. However, increasing …

Unleashing the strengths of unlabeled data in pan-cancer abdominal organ quantification: the flare22 challenge

J Ma, Y Zhang, S Gu, C Ge, S Ma, A Young… - arxiv preprint arxiv …, 2023 - arxiv.org
Quantitative organ assessment is an essential step in automated abdominal disease
diagnosis and treatment planning. Artificial intelligence (AI) has shown great potential to …

nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation

F Isensee, PF Jaeger, SAA Kohl, J Petersen… - Nature …, 2021 - nature.com
Biomedical imaging is a driver of scientific discovery and a core component of medical care
and is being stimulated by the field of deep learning. While semantic segmentation …

Artificial intelligence and machine learning for medical imaging: A technology review

A Barragán-Montero, U Javaid, G Valdés, D Nguyen… - Physica Medica, 2021 - Elsevier
Artificial intelligence (AI) has recently become a very popular buzzword, as a consequence
of disruptive technical advances and impressive experimental results, notably in the field of …