Four generations of high-dimensional neural network potentials
J Behler - Chemical Reviews, 2021 - ACS Publications
Since their introduction about 25 years ago, machine learning (ML) potentials have become
an important tool in the field of atomistic simulations. After the initial decade, in which neural …
an important tool in the field of atomistic simulations. After the initial decade, in which neural …
Combining machine learning and computational chemistry for predictive insights into chemical systems
Machine learning models are poised to make a transformative impact on chemical sciences
by dramatically accelerating computational algorithms and amplifying insights available from …
by dramatically accelerating computational algorithms and amplifying insights available from …
Pushing the frontiers of density functionals by solving the fractional electron problem
Density functional theory describes matter at the quantum level, but all popular
approximations suffer from systematic errors that arise from the violation of mathematical …
approximations suffer from systematic errors that arise from the violation of mathematical …
Machine learning force fields
In recent years, the use of machine learning (ML) in computational chemistry has enabled
numerous advances previously out of reach due to the computational complexity of …
numerous advances previously out of reach due to the computational complexity of …
The central role of density functional theory in the AI age
Density functional theory (DFT) plays a pivotal role in chemical and materials science
because of its relatively high predictive power, applicability, versatility, and computational …
because of its relatively high predictive power, applicability, versatility, and computational …
The MLIP package: moment tensor potentials with MPI and active learning
The subject of this paper is the technology (the'how') of constructing machine-learning
interatomic potentials, rather than science (the'what'and'why') of atomistic simulations using …
interatomic potentials, rather than science (the'what'and'why') of atomistic simulations using …
Orbital-free density functional theory: An attractive electronic structure method for large-scale first-principles simulations
Kohn–Sham Density Functional Theory (KSDFT) is the most widely used electronic structure
method in chemistry, physics, and materials science, with thousands of calculations cited …
method in chemistry, physics, and materials science, with thousands of calculations cited …
Recent advances and applications of machine learning in solid-state materials science
One of the most exciting tools that have entered the material science toolbox in recent years
is machine learning. This collection of statistical methods has already proved to be capable …
is machine learning. This collection of statistical methods has already proved to be capable …
Machine learning and the physical sciences
Machine learning (ML) encompasses a broad range of algorithms and modeling tools used
for a vast array of data processing tasks, which has entered most scientific disciplines in …
for a vast array of data processing tasks, which has entered most scientific disciplines in …
Quantum chemical accuracy from density functional approximations via machine learning
Kohn-Sham density functional theory (DFT) is a standard tool in most branches of chemistry,
but accuracies for many molecules are limited to 2-3 kcal⋅ mol− 1 with presently-available …
but accuracies for many molecules are limited to 2-3 kcal⋅ mol− 1 with presently-available …