Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
The central role of density functional theory in the AI age
Density functional theory (DFT) plays a pivotal role in chemical and materials science
because of its relatively high predictive power, applicability, versatility, and computational …
because of its relatively high predictive power, applicability, versatility, and computational …
Four generations of high-dimensional neural network potentials
J Behler - Chemical Reviews, 2021 - ACS Publications
Since their introduction about 25 years ago, machine learning (ML) potentials have become
an important tool in the field of atomistic simulations. After the initial decade, in which neural …
an important tool in the field of atomistic simulations. After the initial decade, in which neural …
Pushing the frontiers of density functionals by solving the fractional electron problem
Density functional theory describes matter at the quantum level, but all popular
approximations suffer from systematic errors that arise from the violation of mathematical …
approximations suffer from systematic errors that arise from the violation of mathematical …
Orbital-free density functional theory: An attractive electronic structure method for large-scale first-principles simulations
Kohn–Sham Density Functional Theory (KSDFT) is the most widely used electronic structure
method in chemistry, physics, and materials science, with thousands of calculations cited …
method in chemistry, physics, and materials science, with thousands of calculations cited …
Artificial intelligence for science in quantum, atomistic, and continuum systems
Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural
sciences. Today, AI has started to advance natural sciences by improving, accelerating, and …
sciences. Today, AI has started to advance natural sciences by improving, accelerating, and …
Combining machine learning and computational chemistry for predictive insights into chemical systems
Machine learning models are poised to make a transformative impact on chemical sciences
by dramatically accelerating computational algorithms and amplifying insights available from …
by dramatically accelerating computational algorithms and amplifying insights available from …
Machine learning force fields
In recent years, the use of machine learning (ML) in computational chemistry has enabled
numerous advances previously out of reach due to the computational complexity of …
numerous advances previously out of reach due to the computational complexity of …
Extending machine learning beyond interatomic potentials for predicting molecular properties
Abstract Machine learning (ML) is becoming a method of choice for modelling complex
chemical processes and materials. ML provides a surrogate model trained on a reference …
chemical processes and materials. ML provides a surrogate model trained on a reference …
The MLIP package: moment tensor potentials with MPI and active learning
The subject of this paper is the technology (the'how') of constructing machine-learning
interatomic potentials, rather than science (the'what'and'why') of atomistic simulations using …
interatomic potentials, rather than science (the'what'and'why') of atomistic simulations using …
Recent advances and applications of machine learning in solid-state materials science
One of the most exciting tools that have entered the material science toolbox in recent years
is machine learning. This collection of statistical methods has already proved to be capable …
is machine learning. This collection of statistical methods has already proved to be capable …