Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A comprehensive survey on artificial intelligence empowered edge computing on consumer electronics
The Internet revolution and Moore's Law drove the rapid expansion of connected consumer
electronics. As massive data is generated by Internet of Things (IoT) devices, edge …
electronics. As massive data is generated by Internet of Things (IoT) devices, edge …
A comprehensive survey of privacy-preserving federated learning: A taxonomy, review, and future directions
The past four years have witnessed the rapid development of federated learning (FL).
However, new privacy concerns have also emerged during the aggregation of the …
However, new privacy concerns have also emerged during the aggregation of the …
Edge learning for B5G networks with distributed signal processing: Semantic communication, edge computing, and wireless sensing
To process and transfer large amounts of data in emerging wireless services, it has become
increasingly appealing to exploit distributed data communication and learning. Specifically …
increasingly appealing to exploit distributed data communication and learning. Specifically …
Tiny machine learning: Progress and futures [feature]
Tiny machine learning (TinyML) is a new frontier of machine learning. By squeezing deep
learning models into billions of IoT devices and microcontrollers (MCUs), we expand the …
learning models into billions of IoT devices and microcontrollers (MCUs), we expand the …
Split learning over wireless networks: Parallel design and resource management
Split learning (SL) is a collaborative learning framework, which can train an artificial
intelligence (AI) model between a device and an edge server by splitting the AI model into a …
intelligence (AI) model between a device and an edge server by splitting the AI model into a …
Advances and open problems in federated learning
Federated learning (FL) is a machine learning setting where many clients (eg, mobile
devices or whole organizations) collaboratively train a model under the orchestration of a …
devices or whole organizations) collaboratively train a model under the orchestration of a …
Fedml: A research library and benchmark for federated machine learning
Federated learning (FL) is a rapidly growing research field in machine learning. However,
existing FL libraries cannot adequately support diverse algorithmic development; …
existing FL libraries cannot adequately support diverse algorithmic development; …
Federated learning in mobile edge networks: A comprehensive survey
In recent years, mobile devices are equipped with increasingly advanced sensing and
computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up …
computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up …
Revolutionizing future connectivity: A contemporary survey on AI-empowered satellite-based non-terrestrial networks in 6G
Non-Terrestrial Networks (NTN) are expected to be a critical component of 6th Generation
(6G) networks, providing ubiquitous, continuous, and scalable services. Satellites emerge as …
(6G) networks, providing ubiquitous, continuous, and scalable services. Satellites emerge as …
A survey on over-the-air computation
Communication and computation are often viewed as separate tasks. This approach is very
effective from the perspective of engineering as isolated optimizations can be performed …
effective from the perspective of engineering as isolated optimizations can be performed …