[HTML][HTML] Concept drift detection in data stream mining: A literature review

S Agrahari, AK Singh - Journal of King Saud University-Computer and …, 2022 - Elsevier
In recent years, the availability of time series streaming information has been growing
enormously. Learning from real-time data has been receiving increasingly more attention …

[HTML][HTML] A survey on machine learning for recurring concept drifting data streams

AL Suárez-Cetrulo, D Quintana, A Cervantes - Expert Systems with …, 2023 - Elsevier
The problem of concept drift has gained a lot of attention in recent years. This aspect is key
in many domains exhibiting non-stationary as well as cyclic patterns and structural breaks …

An overview of unsupervised drift detection methods

RN Gemaque, AFJ Costa, R Giusti… - … Reviews: Data Mining …, 2020 - Wiley Online Library
Practical applications involving big data, such as weather monitoring, identification of
customer preferences, Internet log analysis, and sensors warnings require challenging data …

Data stream mining: methods and challenges for handling concept drift

S Wares, J Isaacs, E Elyan - SN Applied Sciences, 2019 - Springer
Mining and analysing streaming data is crucial for many applications, and this area of
research has gained extensive attention over the past decade. However, there are several …

Unsupervised concept drift detection for multi-label data streams

EB Gulcan, F Can - Artificial Intelligence Review, 2023 - Springer
Many real-world applications adopt multi-label data streams as the need for algorithms to
deal with rapidly changing data increases. Changes in data distribution, also known as …

Concept learning using one-class classifiers for implicit drift detection in evolving data streams

Ö Gözüaçık, F Can - Artificial Intelligence Review, 2021 - Springer
Data stream mining has become an important research area over the past decade due to the
increasing amount of data available today. Sources from various domains generate a near …

A survey on semi-supervised learning for delayed partially labelled data streams

HM Gomes, M Grzenda, R Mello, J Read… - ACM Computing …, 2022 - dl.acm.org
Unlabelled data appear in many domains and are particularly relevant to streaming
applications, where even though data is abundant, labelled data is rare. To address the …

A systematic review on detection and adaptation of concept drift in streaming data using machine learning techniques

S Arora, R Rani, N Saxena - Wiley Interdisciplinary Reviews …, 2024 - Wiley Online Library
Last decade demonstrate the massive growth in organizational data which keeps on
increasing multi‐fold as millions of records get updated every second. Handling such vast …

[HTML][HTML] Feature-based analyses of concept drift

F Hinder, V Vaquet, B Hammer - Neurocomputing, 2024 - Elsevier
Feature selection is one of the most relevant preprocessing and analysis techniques in
machine learning. It can dramatically increase the performance of learning algorithms and at …

One or Two Things We know about Concept Drift--A Survey on Monitoring Evolving Environments

F Hinder, V Vaquet, B Hammer - arxiv preprint arxiv:2310.15826, 2023 - arxiv.org
The world surrounding us is subject to constant change. These changes, frequently
described as concept drift, influence many industrial and technical processes. As they can …