A comprehensive survey on test-time adaptation under distribution shifts

J Liang, R He, T Tan - International Journal of Computer Vision, 2025 - Springer
Abstract Machine learning methods strive to acquire a robust model during the training
process that can effectively generalize to test samples, even in the presence of distribution …

A review of generalized zero-shot learning methods

F Pourpanah, M Abdar, Y Luo, X Zhou… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Generalized zero-shot learning (GZSL) aims to train a model for classifying data samples
under the condition that some output classes are unknown during supervised learning. To …

Contrastive test-time adaptation

D Chen, D Wang, T Darrell… - Proceedings of the …, 2022 - openaccess.thecvf.com
Test-time adaptation is a special setting of unsupervised domain adaptation where a trained
model on the source domain has to adapt to the target domain without accessing source …

Cdtrans: Cross-domain transformer for unsupervised domain adaptation

T Xu, W Chen, P Wang, F Wang, H Li, R ** - arxiv preprint arxiv …, 2021 - arxiv.org
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a labeled
source domain to a different unlabeled target domain. Most existing UDA methods focus on …

Attracting and dispersing: A simple approach for source-free domain adaptation

S Yang, S Jui, J van de Weijer - Advances in Neural …, 2022 - proceedings.neurips.cc
We propose a simple but effective source-free domain adaptation (SFDA) method. Treating
SFDA as an unsupervised clustering problem and following the intuition that local neighbors …

A survey on negative transfer

W Zhang, L Deng, L Zhang, D Wu - IEEE/CAA Journal of …, 2022 - ieeexplore.ieee.org
Transfer learning (TL) utilizes data or knowledge from one or more source domains to
facilitate learning in a target domain. It is particularly useful when the target domain has very …

Cross-domain correlation distillation for unsupervised domain adaptation in nighttime semantic segmentation

H Gao, J Guo, G Wang… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
The performance of nighttime semantic segmentation is restricted by the poor illumination
and a lack of pixel-wise annotation, which severely limit its application in autonomous …

Guiding pseudo-labels with uncertainty estimation for source-free unsupervised domain adaptation

M Litrico, A Del Bue, P Morerio - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Abstract Standard Unsupervised Domain Adaptation (UDA) methods assume the availability
of both source and target data during the adaptation. In this work, we investigate Source-free …

Transfer adaptation learning: A decade survey

L Zhang, X Gao - IEEE Transactions on Neural Networks and …, 2022 - ieeexplore.ieee.org
The world we see is ever-changing and it always changes with people, things, and the
environment. Domain is referred to as the state of the world at a certain moment. A research …

Patch-mix transformer for unsupervised domain adaptation: A game perspective

J Zhu, H Bai, L Wang - … of the IEEE/CVF conference on …, 2023 - openaccess.thecvf.com
Endeavors have been recently made to leverage the vision transformer (ViT) for the
challenging unsupervised domain adaptation (UDA) task. They typically adopt the cross …