Spectral–spatial feature tokenization transformer for hyperspectral image classification

L Sun, G Zhao, Y Zheng, Z Wu - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
In hyperspectral image (HSI) classification, each pixel sample is assigned to a land-cover
category. In the recent past, convolutional neural network (CNN)-based HSI classification …

Hyperspectral and LiDAR data classification based on structural optimization transmission

M Zhang, W Li, Y Zhang, R Tao… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
With the development of the sensor technology, complementary data of different sources can
be easily obtained for various applications. Despite the availability of adequate multisource …

Hyperspectral image transformer classification networks

X Yang, W Cao, Y Lu, Y Zhou - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Hyperspectral image (HSI) classification is an important task in earth observation missions.
Convolution neural networks (CNNs) with the powerful ability of feature extraction have …

Morphological transformation and spatial-logical aggregation for tree species classification using hyperspectral imagery

M Zhang, W Li, X Zhao, H Liu, R Tao… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Hyperspectral image (HSI) consists of abundant spectral and spatial characteristics, which
contribute to a more accurate identification of materials and land covers. However, most …

Hyperspectral and SAR image classification via multiscale interactive fusion network

J Wang, W Li, Y Gao, M Zhang… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Due to the limitations of single-source data, joint classification using multisource remote
sensing data has received increasing attention. However, existing methods still have certain …

Classification via structure-preserved hypergraph convolution network for hyperspectral image

Y Duan, F Luo, M Fu, Y Niu… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Graph convolutional network (GCN) as a combination of deep learning (DL) and graph
learning has gained increasing attention in hyperspectral image (HSI) classification …

Lessformer: Local-enhanced spectral-spatial transformer for hyperspectral image classification

J Zou, W He, H Zhang - IEEE Transactions on Geoscience and …, 2022 - ieeexplore.ieee.org
Currently, the convolutional neural networks (CNNs) have become the mainstream methods
for hyperspectral image (HSI) classification, due to their powerful ability to extract local …

Local semantic feature aggregation-based transformer for hyperspectral image classification

B Tu, X Liao, Q Li, Y Peng… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Hyperspectral images (HSIs) contain abundant information in the spatial and spectral
domains, allowing for a precise characterization of categories of materials. Convolutional …

Multiscale and cross-level attention learning for hyperspectral image classification

F Xu, G Zhang, C Song, H Wang… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Transformer-based networks, which can well model the global characteristics of inputted
data using the attention mechanism, have been widely applied to hyperspectral image (HSI) …

Hyperspectral image classification based on multibranch attention transformer networks

J Bai, Z Wen, Z **ao, F Ye, Y Zhu… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Deep learning (DL) has become a mainstream method of hyperspectral image (HSI)
classification. Many DL-based methods exploit spatial-spectral features to achieve better …