Computer vision applications in construction: Current state, opportunities & challenges

S Paneru, I Jeelani - Automation in Construction, 2021 - Elsevier
Thousands of images and videos are collected from construction projects during
construction. These contain valuable data that, if harnessed efficiently, can help automate or …

A Survey of Autonomous Driving: Common Practices and Emerging Technologies

E Yurtsever, J Lambert, A Carballo, K Takeda - IEEE access, 2020 - ieeexplore.ieee.org
Automated driving systems (ADSs) promise a safe, comfortable and efficient driving
experience. However, fatalities involving vehicles equipped with ADSs are on the rise. The …

Multimodal foundation models: From specialists to general-purpose assistants

C Li, Z Gan, Z Yang, J Yang, L Li… - … and Trends® in …, 2024 - nowpublishers.com
Neural compression is the application of neural networks and other machine learning
methods to data compression. Recent advances in statistical machine learning have opened …

Hota: A higher order metric for evaluating multi-object tracking

J Luiten, A Osep, P Dendorfer, P Torr, A Geiger… - International journal of …, 2021 - Springer
Multi-object tracking (MOT) has been notoriously difficult to evaluate. Previous metrics
overemphasize the importance of either detection or association. To address this, we …

[HTML][HTML] A survey of sound source localization with deep learning methods

PA Grumiaux, S Kitić, L Girin, A Guérin - The Journal of the Acoustical …, 2022 - pubs.aip.org
This article is a survey of deep learning methods for single and multiple sound source
localization, with a focus on sound source localization in indoor environments, where …

Rethinking the competition between detection and reid in multiobject tracking

C Liang, Z Zhang, X Zhou, B Li, S Zhu… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Due to balanced accuracy and speed, one-shot models which jointly learn detection and
identification embeddings, have drawn great attention in multi-object tracking (MOT) …

Deep learning and computer vision will transform entomology

TT Høye, J Ärje, K Bjerge… - Proceedings of the …, 2021 - National Acad Sciences
Most animal species on Earth are insects, and recent reports suggest that their abundance is
in drastic decline. Although these reports come from a wide range of insect taxa and regions …

Transmot: Spatial-temporal graph transformer for multiple object tracking

P Chu, J Wang, Q You, H Ling… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Tracking multiple objects in videos relies on modeling the spatial-temporal interactions of
the objects. In this paper, we propose TransMOT, which leverages powerful graph …

Deep learning in video multi-object tracking: A survey

G Ciaparrone, FL Sánchez, S Tabik, L Troiano… - Neurocomputing, 2020 - Elsevier
Abstract The problem of Multiple Object Tracking (MOT) consists in following the trajectory of
different objects in a sequence, usually a video. In recent years, with the rise of Deep …

Tracking without bells and whistles

P Bergmann, T Meinhardt… - Proceedings of the …, 2019 - openaccess.thecvf.com
The problem of tracking multiple objects in a video sequence poses several challenging
tasks. For tracking-by-detection, these include object re-identification, motion prediction and …