A tutorial review of neural network modeling approaches for model predictive control

YM Ren, MS Alhajeri, J Luo, S Chen, F Abdullah… - Computers & Chemical …, 2022 - Elsevier
An overview of the recent developments of time-series neural network modeling is
presented along with its use in model predictive control (MPC). A tutorial on the construction …

Recent trends on hybrid modeling for Industry 4.0

J Sansana, MN Joswiak, I Castillo, Z Wang… - Computers & Chemical …, 2021 - Elsevier
The chemical processing industry has relied on modeling techniques for process monitoring,
control, diagnosis, optimization, and design, especially since the third industrial revolution …

Machine learning in chemical engineering: A perspective

AM Schweidtmann, E Esche, A Fischer… - Chemie Ingenieur …, 2021 - Wiley Online Library
The transformation of the chemical industry to renewable energy and feedstock supply
requires new paradigms for the design of flexible plants,(bio‐) catalysts, and functional …

Process systems engineering–the generation next?

EN Pistikopoulos, A Barbosa-Povoa, JH Lee… - Computers & Chemical …, 2021 - Elsevier
Abstract Process Systems Engineering (PSE) is the scientific discipline of integrating scales
and components describing the behavior of a physicochemical system, via mathematical …

Advances in surrogate based modeling, feasibility analysis, and optimization: A review

A Bhosekar, M Ierapetritou - Computers & Chemical Engineering, 2018 - Elsevier
The idea of using a simpler surrogate to represent a complex phenomenon has gained
increasing popularity over past three decades. Due to their ability to exploit the black-box …

Perspectives on the integration between first-principles and data-driven modeling

W Bradley, J Kim, Z Kilwein, L Blakely… - Computers & Chemical …, 2022 - Elsevier
Efficiently embedding and/or integrating mechanistic information with data-driven models is
essential if it is desired to simultaneously take advantage of both engineering principles and …

A comparative study of demand forecasting models for a multi-channel retail company: a novel hybrid machine learning approach

A Mitra, A Jain, A Kishore, P Kumar - Operations research forum, 2022 - Springer
Demand forecasting has been a major concern of operational strategy to manage the
inventory and optimize the customer satisfaction level. The researchers have proposed …

OMLT: Optimization & machine learning toolkit

F Ceccon, J Jalving, J Haddad, A Thebelt… - Journal of Machine …, 2022 - jmlr.org
The optimization and machine learning toolkit (OMLT) is an open-source software package
incorporating neural network and gradient-boosted tree surrogate models, which have been …

[HTML][HTML] A review and perspective on hybrid modeling methodologies

AM Schweidtmann, D Zhang, M von Stosch - Digital Chemical Engineering, 2024 - Elsevier
The term hybrid modeling refers to the combination of parametric models (typically derived
from knowledge about the system) and nonparametric models (typically deduced from data) …

Overview of surrogate modeling in chemical process engineering

K McBride, K Sundmacher - Chemie Ingenieur Technik, 2019 - Wiley Online Library
The ability to accurately model and simulate chemical processes has been paramount to the
growing success and efficiency in process design and operation. These improvements …