Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A tutorial review of neural network modeling approaches for model predictive control
An overview of the recent developments of time-series neural network modeling is
presented along with its use in model predictive control (MPC). A tutorial on the construction …
presented along with its use in model predictive control (MPC). A tutorial on the construction …
Recent trends on hybrid modeling for Industry 4.0
The chemical processing industry has relied on modeling techniques for process monitoring,
control, diagnosis, optimization, and design, especially since the third industrial revolution …
control, diagnosis, optimization, and design, especially since the third industrial revolution …
Machine learning in chemical engineering: A perspective
The transformation of the chemical industry to renewable energy and feedstock supply
requires new paradigms for the design of flexible plants,(bio‐) catalysts, and functional …
requires new paradigms for the design of flexible plants,(bio‐) catalysts, and functional …
Process systems engineering–the generation next?
Abstract Process Systems Engineering (PSE) is the scientific discipline of integrating scales
and components describing the behavior of a physicochemical system, via mathematical …
and components describing the behavior of a physicochemical system, via mathematical …
Advances in surrogate based modeling, feasibility analysis, and optimization: A review
The idea of using a simpler surrogate to represent a complex phenomenon has gained
increasing popularity over past three decades. Due to their ability to exploit the black-box …
increasing popularity over past three decades. Due to their ability to exploit the black-box …
Perspectives on the integration between first-principles and data-driven modeling
Efficiently embedding and/or integrating mechanistic information with data-driven models is
essential if it is desired to simultaneously take advantage of both engineering principles and …
essential if it is desired to simultaneously take advantage of both engineering principles and …
A comparative study of demand forecasting models for a multi-channel retail company: a novel hybrid machine learning approach
A Mitra, A Jain, A Kishore, P Kumar - Operations research forum, 2022 - Springer
Demand forecasting has been a major concern of operational strategy to manage the
inventory and optimize the customer satisfaction level. The researchers have proposed …
inventory and optimize the customer satisfaction level. The researchers have proposed …
OMLT: Optimization & machine learning toolkit
The optimization and machine learning toolkit (OMLT) is an open-source software package
incorporating neural network and gradient-boosted tree surrogate models, which have been …
incorporating neural network and gradient-boosted tree surrogate models, which have been …
[HTML][HTML] A review and perspective on hybrid modeling methodologies
The term hybrid modeling refers to the combination of parametric models (typically derived
from knowledge about the system) and nonparametric models (typically deduced from data) …
from knowledge about the system) and nonparametric models (typically deduced from data) …
Overview of surrogate modeling in chemical process engineering
K McBride, K Sundmacher - Chemie Ingenieur Technik, 2019 - Wiley Online Library
The ability to accurately model and simulate chemical processes has been paramount to the
growing success and efficiency in process design and operation. These improvements …
growing success and efficiency in process design and operation. These improvements …