A review: Knowledge reasoning over knowledge graph

X Chen, S Jia, Y **ang - Expert systems with applications, 2020 - Elsevier
Mining valuable hidden knowledge from large-scale data relies on the support of reasoning
technology. Knowledge graphs, as a new type of knowledge representation, have gained …

A comprehensive survey of graph embedding: Problems, techniques, and applications

H Cai, VW Zheng, KCC Chang - IEEE transactions on …, 2018 - ieeexplore.ieee.org
Graph is an important data representation which appears in a wide diversity of real-world
scenarios. Effective graph analytics provides users a deeper understanding of what is …

Knowledge graph embedding for link prediction: A comparative analysis

A Rossi, D Barbosa, D Firmani, A Matinata… - ACM Transactions on …, 2021 - dl.acm.org
Knowledge Graphs (KGs) have found many applications in industrial and in academic
settings, which in turn, have motivated considerable research efforts towards large-scale …

Representation learning for dynamic graphs: A survey

SM Kazemi, R Goel, K Jain, I Kobyzev, A Sethi… - Journal of Machine …, 2020 - jmlr.org
Graphs arise naturally in many real-world applications including social networks,
recommender systems, ontologies, biology, and computational finance. Traditionally …

Boxe: A box embedding model for knowledge base completion

R Abboud, I Ceylan, T Lukasiewicz… - Advances in Neural …, 2020 - proceedings.neurips.cc
Abstract Knowledge base completion (KBC) aims to automatically infer missing facts by
exploiting information already present in a knowledge base (KB). A promising approach for …

A comprehensive overview of knowledge graph completion

T Shen, F Zhang, J Cheng - Knowledge-Based Systems, 2022 - Elsevier
Abstract Knowledge Graph (KG) provides high-quality structured knowledge for various
downstream knowledge-aware tasks (such as recommendation and intelligent question …

Beyond triplets: hyper-relational knowledge graph embedding for link prediction

P Rosso, D Yang, P Cudré-Mauroux - Proceedings of the web …, 2020 - dl.acm.org
Knowledge Graph (KG) embeddings are a powerful tool for predicting missing links in KGs.
Existing techniques typically represent a KG as a set of triplets, where each triplet (h, r, t) …

[HTML][HTML] Knowledge graph and knowledge reasoning: A systematic review

L Tian, X Zhou, YP Wu, WT Zhou, JH Zhang… - Journal of Electronic …, 2022 - Elsevier
The knowledge graph (KG) that represents structural relations among entities has become
an increasingly important research field for knowledge-driven artificial intelligence. In this …

What is event knowledge graph: A survey

S Guan, X Cheng, L Bai, F Zhang, Z Li… - … on Knowledge and …, 2022 - ieeexplore.ieee.org
Besides entity-centric knowledge, usually organized as Knowledge Graph (KG), events are
also an essential kind of knowledge in the world, which trigger the spring up of event-centric …

Message passing for hyper-relational knowledge graphs

M Galkin, P Trivedi, G Maheshwari, R Usbeck… - arxiv preprint arxiv …, 2020 - arxiv.org
Hyper-relational knowledge graphs (KGs)(eg, Wikidata) enable associating additional key-
value pairs along with the main triple to disambiguate, or restrict the validity of a fact. In this …