Application of meta-heuristic algorithms for training neural networks and deep learning architectures: A comprehensive review

M Kaveh, MS Mesgari - Neural Processing Letters, 2023 - Springer
The learning process and hyper-parameter optimization of artificial neural networks (ANNs)
and deep learning (DL) architectures is considered one of the most challenging machine …

A survey on intrusion detection system: feature selection, model, performance measures, application perspective, challenges, and future research directions

A Thakkar, R Lohiya - Artificial Intelligence Review, 2022 - Springer
With the increase in the usage of the Internet, a large amount of information is exchanged
between different communicating devices. The data should be communicated securely …

Fed-anids: Federated learning for anomaly-based network intrusion detection systems

MJ Idrissi, H Alami, A El Mahdaouy, A El Mekki… - Expert Systems with …, 2023 - Elsevier
As computer networks and interconnected systems continue to gain widespread adoption,
ensuring cybersecurity has become a prominent concern for organizations, regardless of …

MTH-IDS: A multitiered hybrid intrusion detection system for internet of vehicles

L Yang, A Moubayed, A Shami - IEEE Internet of Things Journal, 2021 - ieeexplore.ieee.org
Modern vehicles, including connected vehicles and autonomous vehicles, nowadays
involve many electronic control units connected through intravehicle networks (IVNs) to …

A systematic literature review for network intrusion detection system (IDS)

OH Abdulganiyu, T Ait Tchakoucht… - International journal of …, 2023 - Springer
With the recent increase in internet usage, the number of important, sensitive, confidential
individual and corporate data passing through internet has increasingly grown. With gaps in …

Imbalanced data classification: A KNN and generative adversarial networks-based hybrid approach for intrusion detection

H Ding, L Chen, L Dong, Z Fu, X Cui - Future Generation Computer Systems, 2022 - Elsevier
With the continuous emergence of various network attacks, it is becoming more and more
important to ensure the security of the network. Intrusion detection, as one of the important …

[HTML][HTML] Ensuring network security with a robust intrusion detection system using ensemble-based machine learning

MA Hossain, MS Islam - Array, 2023 - Elsevier
Intrusion detection is a critical aspect of network security to protect computer systems from
unauthorized access and attacks. The capacity of traditional intrusion detection systems …

Machine learning-enabled iot security: Open issues and challenges under advanced persistent threats

Z Chen, J Liu, Y Shen, M Simsek, B Kantarci… - ACM Computing …, 2022 - dl.acm.org
Despite its technological benefits, the Internet of Things (IoT) has cyber weaknesses due to
vulnerabilities in the wireless medium. Machine Larning (ML)-based methods are widely …

An effective intrusion detection approach using SVM with naïve Bayes feature embedding

J Gu, S Lu - Computers & Security, 2021 - Elsevier
Network security has become increasingly important in recent decades, while intrusion
detection system plays a critical role in protecting it. Various machine learning techniques …

A comprehensive review on detection of cyber-attacks: Data sets, methods, challenges, and future research directions

H Ahmetoglu, R Das - Internet of Things, 2022 - Elsevier
Rapid developments in network technologies and the amount and scope of data transferred
on networks are increasing day by day. Depending on this situation, the density and …