[PDF][PDF] Parameterized inapproximability hypothesis under exponential time hypothesis

V Guruswami, B Lin, X Ren, Y Sun, K Wu - Proceedings of the 56th …, 2024 - dl.acm.org
The Parameterized Inapproximability Hypothesis (PIH) asserts that no fixed parameter
tractable (FPT) algorithm can distinguish a satisfiable CSP instance, parameterized by the …

The complexity of the shortest vector problem

H Bennett - ACM SIGACT News, 2023 - dl.acm.org
Computational problems on point lattices play a central role in many areas of computer
science including integer programming, coding theory, cryptanalysis, and especially the …

On Equivalence of Parameterized Inapproximability of k-Median, k-Max-Coverage, and 2-CSP

CS Karthik, E Lee, P Manurangsi - 19th International Symposium …, 2024 - drops.dagstuhl.de
Abstract Parameterized Inapproximability Hypothesis (PIH) is a central question in the field
of parameterized complexity. PIH asserts that given as input a 2-CSP on k variables and …

Improved lower bounds for approximating parameterized nearest codeword and related problems under ETH

S Li, B Lin, Y Liu - arxiv preprint arxiv:2402.09825, 2024 - arxiv.org
In this paper we present a new gap-creating randomized self-reduction for parameterized
Maximum Likelihood Decoding problem over $\mathbb {F} _p $($ k $-MLD $ _p $). The …

Hardness of the (approximate) shortest vector problem: A simple proof via reed-solomon codes

H Bennett, C Peikert - arxiv preprint arxiv:2202.07736, 2022 - arxiv.org
$\newcommand {\NP}{\mathsf {NP}}\newcommand {\GapSVP}{\textrm {GapSVP}} $ We give
a simple proof that the (approximate, decisional) Shortest Vector Problem is $\NP $-hard …

Fast decision tree learning solves hard coding-theoretic problems

C Koch, C Strassle, LY Tan - 2024 IEEE 65th Annual …, 2024 - ieeexplore.ieee.org
We connect the problem of properly PAC learning decision trees to the parameterized
Nearest Codeword Problem (k-NCP). Despite significant effort by the respective …

Maximum Span Hypothesis: A Potentially Weaker Assumption than Gap-ETH for Parameterized Complexity

K CS, S Khot - Proceedings of the 2025 Annual ACM-SIAM …, 2025 - SIAM
Abstract The Gap Exponential Time Hypothesis rules out FPT algorithms providing (nearly)
tight inapproximability results for a host of fundamental problems in parameterized …

On Equivalence of Parameterized Inapproximability of k-Median, k-Max-Coverage, and 2-CSP

E Lee, P Manurangsi - arxiv preprint arxiv:2407.08917, 2024 - arxiv.org
Parameterized Inapproximability Hypothesis (PIH) is a central question in the field of
parameterized complexity. PIH asserts that given as input a 2-CSP on $ k $ variables and …