Machine learning for electrocatalyst and photocatalyst design and discovery

H Mai, TC Le, D Chen, DA Winkler… - Chemical …, 2022 - ACS Publications
Electrocatalysts and photocatalysts are key to a sustainable future, generating clean fuels,
reducing the impact of global warming, and providing solutions to environmental pollution …

Recent advances and applications of deep learning methods in materials science

K Choudhary, B DeCost, C Chen, A Jain… - npj Computational …, 2022 - nature.com
Deep learning (DL) is one of the fastest-growing topics in materials data science, with
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …

A review of deep transfer learning and recent advancements

M Iman, HR Arabnia, K Rasheed - Technologies, 2023 - mdpi.com
Deep learning has been the answer to many machine learning problems during the past two
decades. However, it comes with two significant constraints: dependency on extensive …

Miniaturization of optical spectrometers

Z Yang, T Albrow-Owen, W Cai, T Hasan - Science, 2021 - science.org
BACKGROUND Optical spectrometry is one of the most powerful and widely used
characterization tools in scientific and industrial research. Benchtop laboratory spectrometer …

The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design

K Choudhary, KF Garrity, ACE Reid, B DeCost… - npj computational …, 2020 - nature.com
Abstract The Joint Automated Repository for Various Integrated Simulations (JARVIS) is an
integrated infrastructure to accelerate materials discovery and design using density …

[HTML][HTML] Next-generation energy systems for sustainable smart cities: Roles of transfer learning

Y Himeur, M Elnour, F Fadli, N Meskin, I Petri… - Sustainable Cities and …, 2022 - Elsevier
Smart cities attempt to reach net-zero emissions goals by reducing wasted energy while
improving grid stability and meeting service demand. This is possible by adopting next …

Enhancing corrosion-resistant alloy design through natural language processing and deep learning

KN Sasidhar, NH Siboni, JR Mianroodi… - Science …, 2023 - science.org
We propose strategies that couple natural language processing with deep learning to
enhance machine capability for corrosion-resistant alloy design. First, accuracy of machine …

Data‐Driven Materials Innovation and Applications

Z Wang, Z Sun, H Yin, X Liu, J Wang, H Zhao… - Advanced …, 2022 - Wiley Online Library
Owing to the rapid developments to improve the accuracy and efficiency of both
experimental and computational investigative methodologies, the massive amounts of data …

Deep transfer learning for automatic speech recognition: Towards better generalization

H Kheddar, Y Himeur, S Al-Maadeed, A Amira… - Knowledge-Based …, 2023 - Elsevier
Automatic speech recognition (ASR) has recently become an important challenge when
using deep learning (DL). It requires large-scale training datasets and high computational …

Electronic structure modeling of metal–organic frameworks

JL Mancuso, AM Mroz, KN Le, CH Hendon - Chemical reviews, 2020 - ACS Publications
Owing to their molecular building blocks, yet highly crystalline nature, metal–organic
frameworks (MOFs) sit at the interface between molecule and material. Their diverse …