Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Taking the human out of the loop: A review of Bayesian optimization
Big Data applications are typically associated with systems involving large numbers of
users, massive complex software systems, and large-scale heterogeneous computing and …
users, massive complex software systems, and large-scale heterogeneous computing and …
A survey on the densest subgraph problem and its variants
The Densest Subgraph Problem requires us to find, in a given graph, a subset of vertices
whose induced subgraph maximizes a measure of density. The problem has received a …
whose induced subgraph maximizes a measure of density. The problem has received a …
Automatic prompt optimization with" gradient descent" and beam search
Large Language Models (LLMs) have shown impressive performance as general purpose
agents, but their abilities remain highly dependent on prompts which are hand written with …
agents, but their abilities remain highly dependent on prompts which are hand written with …
Closed-loop optimization of fast-charging protocols for batteries with machine learning
Simultaneously optimizing many design parameters in time-consuming experiments causes
bottlenecks in a broad range of scientific and engineering disciplines,. One such example is …
bottlenecks in a broad range of scientific and engineering disciplines,. One such example is …
Causal machine learning: A survey and open problems
Causal Machine Learning (CausalML) is an umbrella term for machine learning methods
that formalize the data-generation process as a structural causal model (SCM). This …
that formalize the data-generation process as a structural causal model (SCM). This …
[LIBRO][B] Bandit algorithms
T Lattimore, C Szepesvári - 2020 - books.google.com
Decision-making in the face of uncertainty is a significant challenge in machine learning,
and the multi-armed bandit model is a commonly used framework to address it. This …
and the multi-armed bandit model is a commonly used framework to address it. This …
Introduction to multi-armed bandits
A Slivkins - Foundations and Trends® in Machine Learning, 2019 - nowpublishers.com
Multi-armed bandits a simple but very powerful framework for algorithms that make
decisions over time under uncertainty. An enormous body of work has accumulated over the …
decisions over time under uncertainty. An enormous body of work has accumulated over the …
[LIBRO][B] Reinforcement Learning and Stochastic Optimization: A Unified Framework for Sequential Decisions: by Warren B. Powell (ed.), Wiley (2022). Hardback …
I Halperin - 2022 - Taylor & Francis
What is reinforcement learning? How is reinforcement learning different from stochastic
optimization? And finally, can it be used for applications to quantitative finance for my current …
optimization? And finally, can it be used for applications to quantitative finance for my current …
Non-stochastic best arm identification and hyperparameter optimization
Motivated by the task of hyperparameter optimization, we introduce the\em non-stochastic
best-arm identification problem. We identify an attractive algorithm for this setting that makes …
best-arm identification problem. We identify an attractive algorithm for this setting that makes …
Regret analysis of stochastic and nonstochastic multi-armed bandit problems
Multi-armed bandit problems are the most basic examples of sequential decision problems
with an exploration-exploitation trade-off. This is the balance between staying with the option …
with an exploration-exploitation trade-off. This is the balance between staying with the option …