Deep learning in human activity recognition with wearable sensors: A review on advances

S Zhang, Y Li, S Zhang, F Shahabi, S **a, Y Deng… - Sensors, 2022 - mdpi.com
Mobile and wearable devices have enabled numerous applications, including activity
tracking, wellness monitoring, and human–computer interaction, that measure and improve …

A survey on deep learning for human activity recognition

F Gu, MH Chung, M Chignell, S Valaee… - ACM Computing …, 2021 - dl.acm.org
Human activity recognition is a key to a lot of applications such as healthcare and smart
home. In this study, we provide a comprehensive survey on recent advances and challenges …

Deep learning for sensor-based human activity recognition: Overview, challenges, and opportunities

K Chen, D Zhang, L Yao, B Guo, Z Yu… - ACM Computing Surveys …, 2021 - dl.acm.org
The vast proliferation of sensor devices and Internet of Things enables the applications of
sensor-based activity recognition. However, there exist substantial challenges that could …

Edge intelligence: Empowering intelligence to the edge of network

D Xu, T Li, Y Li, X Su, S Tarkoma, T Jiang… - Proceedings of the …, 2021 - ieeexplore.ieee.org
Edge intelligence refers to a set of connected systems and devices for data collection,
caching, processing, and analysis proximity to where data are captured based on artificial …

Deep learning in mobile and wireless networking: A survey

C Zhang, P Patras, H Haddadi - IEEE Communications surveys …, 2019 - ieeexplore.ieee.org
The rapid uptake of mobile devices and the rising popularity of mobile applications and
services pose unprecedented demands on mobile and wireless networking infrastructure …

Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges

HF Nweke, YW Teh, MA Al-Garadi, UR Alo - Expert Systems with …, 2018 - Elsevier
Human activity recognition systems are developed as part of a framework to enable
continuous monitoring of human behaviours in the area of ambient assisted living, sports …

Deep learning for sensor-based activity recognition: A survey

J Wang, Y Chen, S Hao, X Peng, L Hu - Pattern recognition letters, 2019 - Elsevier
Sensor-based activity recognition seeks the profound high-level knowledge about human
activities from multitudes of low-level sensor readings. Conventional pattern recognition …

Deep multimodal learning: A survey on recent advances and trends

D Ramachandram, GW Taylor - IEEE signal processing …, 2017 - ieeexplore.ieee.org
The success of deep learning has been a catalyst to solving increasingly complex machine-
learning problems, which often involve multiple data modalities. We review recent advances …

[HTML][HTML] Multibench: Multiscale benchmarks for multimodal representation learning

PP Liang, Y Lyu, X Fan, Z Wu, Y Cheng… - Advances in neural …, 2021 - ncbi.nlm.nih.gov
Learning multimodal representations involves integrating information from multiple
heterogeneous sources of data. It is a challenging yet crucial area with numerous real-world …

Deepsense: A unified deep learning framework for time-series mobile sensing data processing

S Yao, S Hu, Y Zhao, A Zhang… - Proceedings of the 26th …, 2017 - dl.acm.org
Mobile sensing and computing applications usually require time-series inputs from sensors,
such as accelerometers, gyroscopes, and magnetometers. Some applications, such as …