Deep learning in medical image registration: a review
This paper presents a review of deep learning (DL)-based medical image registration
methods. We summarized the latest developments and applications of DL-based registration …
methods. We summarized the latest developments and applications of DL-based registration …
A review on medical imaging synthesis using deep learning and its clinical applications
This paper reviewed the deep learning‐based studies for medical imaging synthesis and its
clinical application. Specifically, we summarized the recent developments of deep learning …
clinical application. Specifically, we summarized the recent developments of deep learning …
A review of deep learning based methods for medical image multi-organ segmentation
Deep learning has revolutionized image processing and achieved the-state-of-art
performance in many medical image segmentation tasks. Many deep learning-based …
performance in many medical image segmentation tasks. Many deep learning-based …
Modality specific U-Net variants for biomedical image segmentation: a survey
With the advent of advancements in deep learning approaches, such as deep convolution
neural network, residual neural network, adversarial network; U-Net architectures are most …
neural network, residual neural network, adversarial network; U-Net architectures are most …
Deep learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: a review
Abstract Accurate diagnosis of Autism Spectrum Disorder (ASD) followed by effective
rehabilitation is essential for the management of this disorder. Artificial intelligence (AI) …
rehabilitation is essential for the management of this disorder. Artificial intelligence (AI) …
The Role of generative adversarial network in medical image analysis: An in-depth survey
M AlAmir, M AlGhamdi - ACM Computing Surveys, 2022 - dl.acm.org
A generative adversarial network (GAN) is one of the most significant research directions in
the field of artificial intelligence, and its superior data generation capability has garnered …
the field of artificial intelligence, and its superior data generation capability has garnered …
CBCT‐based synthetic CT generation using deep‐attention cycleGAN for pancreatic adaptive radiotherapy
Purpose Current clinical application of cone‐beam CT (CBCT) is limited to patient setup.
Imaging artifacts and Hounsfield unit (HU) inaccuracy make the process of CBCT‐based …
Imaging artifacts and Hounsfield unit (HU) inaccuracy make the process of CBCT‐based …
Artificial intelligence and machine learning in prostate cancer patient management—current trends and future perspectives
Artificial intelligence (AI) is the field of computer science that aims to build smart devices
performing tasks that currently require human intelligence. Through machine learning (ML) …
performing tasks that currently require human intelligence. Through machine learning (ML) …
Abdomen CT multi‐organ segmentation using token‐based MLP‐Mixer
Background Manual contouring is very labor‐intensive, time‐consuming, and subject to intra‐
and inter‐observer variability. An automated deep learning approach to fast and accurate …
and inter‐observer variability. An automated deep learning approach to fast and accurate …
Generative adversarial networks and its applications in the biomedical image segmentation: a comprehensive survey
Recent advancements with deep generative models have proven significant potential in the
task of image synthesis, detection, segmentation, and classification. Segmenting the medical …
task of image synthesis, detection, segmentation, and classification. Segmenting the medical …