Data-driven modeling for unsteady aerodynamics and aeroelasticity

J Kou, W Zhang - Progress in Aerospace Sciences, 2021 - Elsevier
Aerodynamic modeling plays an important role in multiphysics and design problems, in
addition to experiment and numerical simulation, due to its low-dimensional representation …

Survey of multifidelity methods in uncertainty propagation, inference, and optimization

B Peherstorfer, K Willcox, M Gunzburger - Siam Review, 2018 - SIAM
In many situations across computational science and engineering, multiple computational
models are available that describe a system of interest. These different models have varying …

[KSIĄŻKA][B] Data-driven science and engineering: Machine learning, dynamical systems, and control

SL Brunton, JN Kutz - 2022 - books.google.com
Data-driven discovery is revolutionizing how we model, predict, and control complex
systems. Now with Python and MATLAB®, this textbook trains mathematical scientists and …

Modal analysis of fluid flows: Applications and outlook

K Taira, MS Hemati, SL Brunton, Y Sun, K Duraisamy… - AIAA journal, 2020 - arc.aiaa.org
THE field of fluid mechanics involves a range of rich and vibrant problems with complex
dynamics stemming from instabilities, nonlinearities, and turbulence. The analysis of these …

Learning physics-based models from data: perspectives from inverse problems and model reduction

O Ghattas, K Willcox - Acta Numerica, 2021 - cambridge.org
This article addresses the inference of physics models from data, from the perspectives of
inverse problems and model reduction. These fields develop formulations that integrate data …

Reduced basis methods for time-dependent problems

JS Hesthaven, C Pagliantini, G Rozza - Acta Numerica, 2022 - cambridge.org
Numerical simulation of parametrized differential equations is of crucial importance in the
study of real-world phenomena in applied science and engineering. Computational methods …

Closed-loop turbulence control: Progress and challenges

SL Brunton, BR Noack - Applied Mechanics …, 2015 - asmedigitalcollection.asme.org
Closed-loop turbulence control is a critical enabler of aerodynamic drag reduction, lift
increase, mixing enhancement, and noise reduction. Current and future applications have …

A survey of projection-based model reduction methods for parametric dynamical systems

P Benner, S Gugercin, K Willcox - SIAM review, 2015 - SIAM
Numerical simulation of large-scale dynamical systems plays a fundamental role in studying
a wide range of complex physical phenomena; however, the inherent large-scale nature of …

[KSIĄŻKA][B] Machine learning control-taming nonlinear dynamics and turbulence

T Duriez, SL Brunton, BR Noack - 2017 - Springer
This book is an introduction to machine learning control (MLC), a surprisingly simple model-
free methodology to tame complex nonlinear systems. These systems are assumed to be …

Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem

Q Wang, JS Hesthaven, D Ray - Journal of computational physics, 2019 - Elsevier
A non-intrusive reduced-basis (RB) method is proposed for parametrized unsteady flows. A
set of reduced basis functions are extracted from a collection of high-fidelity solutions via a …