Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges

B Bischl, M Binder, M Lang, T Pielok… - … : Data Mining and …, 2023 - Wiley Online Library
Most machine learning algorithms are configured by a set of hyperparameters whose values
must be carefully chosen and which often considerably impact performance. To avoid a time …

Recent advances in Bayesian optimization

X Wang, Y **, S Schmitt, M Olhofer - ACM Computing Surveys, 2023 - dl.acm.org
Bayesian optimization has emerged at the forefront of expensive black-box optimization due
to its data efficiency. Recent years have witnessed a proliferation of studies on the …

[PDF][PDF] Hyperparameter optimization

M Feurer, F Hutter - Automated machine learning: Methods …, 2019 - library.oapen.org
Recent interest in complex and computationally expensive machine learning models with
many hyperparameters, such as automated machine learning (AutoML) frameworks and …

Multi-task learning as multi-objective optimization

O Sener, V Koltun - Advances in neural information …, 2018 - proceedings.neurips.cc
In multi-task learning, multiple tasks are solved jointly, sharing inductive bias between them.
Multi-task learning is inherently a multi-objective problem because different tasks may …

Batchbald: Efficient and diverse batch acquisition for deep bayesian active learning

A Kirsch, J Van Amersfoort… - Advances in neural …, 2019 - proceedings.neurips.cc
We develop BatchBALD, a tractable approximation to the mutual information between a
batch of points and model parameters, which we use as an acquisition function to select …

Bayesian optimization for adaptive experimental design: A review

S Greenhill, S Rana, S Gupta, P Vellanki… - IEEE …, 2020 - ieeexplore.ieee.org
Bayesian optimisation is a statistical method that efficiently models and optimises expensive
“black-box” functions. This review considers the application of Bayesian optimisation to …

Pareto multi-task learning

X Lin, HL Zhen, Z Li, QF Zhang… - Advances in neural …, 2019 - proceedings.neurips.cc
Multi-task learning is a powerful method for solving multiple correlated tasks simultaneously.
However, it is often impossible to find one single solution to optimize all the tasks, since …

Modern Bayesian experimental design

T Rainforth, A Foster, DR Ivanova… - Statistical …, 2024 - projecteuclid.org
Bayesian experimental design (BED) provides a powerful and general framework for
optimizing the design of experiments. However, its deployment often poses substantial …

Pareto set learning for expensive multi-objective optimization

X Lin, Z Yang, X Zhang… - Advances in neural …, 2022 - proceedings.neurips.cc
Expensive multi-objective optimization problems can be found in many real-world
applications, where their objective function evaluations involve expensive computations or …

A survey on multi-objective hyperparameter optimization algorithms for machine learning

A Morales-Hernández, I Van Nieuwenhuyse… - Artificial Intelligence …, 2023 - Springer
Hyperparameter optimization (HPO) is a necessary step to ensure the best possible
performance of Machine Learning (ML) algorithms. Several methods have been developed …