Artificial intelligence for multimodal data integration in oncology

J Lipkova, RJ Chen, B Chen, MY Lu, M Barbieri… - Cancer cell, 2022 - cell.com
In oncology, the patient state is characterized by a whole spectrum of modalities, ranging
from radiology, histology, and genomics to electronic health records. Current artificial …

[HTML][HTML] Transformers in medical image analysis

K He, C Gan, Z Li, I Rekik, Z Yin, W Ji, Y Gao, Q Wang… - Intelligent …, 2023 - Elsevier
Transformers have dominated the field of natural language processing and have recently
made an impact in the area of computer vision. In the field of medical image analysis …

Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L) 1 blockade in patients with non-small cell lung cancer

RS Vanguri, J Luo, AT Aukerman, JV Egger, CJ Fong… - Nature cancer, 2022 - nature.com
Immunotherapy is used to treat almost all patients with advanced non-small cell lung cancer
(NSCLC); however, identifying robust predictive biomarkers remains challenging. Here we …

Federated learning and differential privacy for medical image analysis

M Adnan, S Kalra, JC Cresswell, GW Taylor… - Scientific reports, 2022 - nature.com
The artificial intelligence revolution has been spurred forward by the availability of large-
scale datasets. In contrast, the paucity of large-scale medical datasets hinders the …

Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning

B Li, Y Li, KW Eliceiri - … of the IEEE/CVF conference on …, 2021 - openaccess.thecvf.com
We address the challenging problem of whole slide image (WSI) classification. WSIs have
very high resolutions and usually lack localized annotations. WSI classification can be cast …

Hopfield networks is all you need

H Ramsauer, B Schäfl, J Lehner, P Seidl… - ar**s as
possible between the training data and outputs, where each training data will predict as a …

Pooling in convolutional neural networks for medical image analysis: a survey and an empirical study

R Nirthika, S Manivannan, A Ramanan… - Neural Computing and …, 2022 - Springer
Convolutional neural networks (CNN) are widely used in computer vision and medical
image analysis as the state-of-the-art technique. In CNN, pooling layers are included mainly …