Deep learning in multi-object detection and tracking: state of the art

SK Pal, A Pramanik, J Maiti, P Mitra - Applied Intelligence, 2021 - Springer
Object detection and tracking is one of the most important and challenging branches in
computer vision, and have been widely applied in various fields, such as health-care …

Computer vision for autonomous vehicles: Problems, datasets and state of the art

J Janai, F Güney, A Behl, A Geiger - Foundations and Trends® …, 2020 - nowpublishers.com
Recent years have witnessed enormous progress in AI-related fields such as computer
vision, machine learning, and autonomous vehicles. As with any rapidly growing field, it …

Tracking anything with decoupled video segmentation

HK Cheng, SW Oh, B Price… - Proceedings of the …, 2023 - openaccess.thecvf.com
Training data for video segmentation are expensive to annotate. This impedes extensions of
end-to-end algorithms to new video segmentation tasks, especially in large-vocabulary …

Motr: End-to-end multiple-object tracking with transformer

F Zeng, B Dong, Y Zhang, T Wang, X Zhang… - European Conference on …, 2022 - Springer
Temporal modeling of objects is a key challenge in multiple-object tracking (MOT). Existing
methods track by associating detections through motion-based and appearance-based …

Trackformer: Multi-object tracking with transformers

T Meinhardt, A Kirillov, L Leal-Taixe… - Proceedings of the …, 2022 - openaccess.thecvf.com
The challenging task of multi-object tracking (MOT) requires simultaneous reasoning about
track initialization, identity, and spatio-temporal trajectories. We formulate this task as a …

Track to detect and segment: An online multi-object tracker

J Wu, J Cao, L Song, Y Wang… - Proceedings of the …, 2021 - openaccess.thecvf.com
Most online multi-object trackers perform object detection stand-alone in a neural net without
any input from tracking. In this paper, we present a new online joint detection and tracking …

Hota: A higher order metric for evaluating multi-object tracking

J Luiten, A Osep, P Dendorfer, P Torr, A Geiger… - International journal of …, 2021 - Springer
Multi-object tracking (MOT) has been notoriously difficult to evaluate. Previous metrics
overemphasize the importance of either detection or association. To address this, we …

Motiontrack: Learning robust short-term and long-term motions for multi-object tracking

Z Qin, S Zhou, L Wang, J Duan… - Proceedings of the …, 2023 - openaccess.thecvf.com
The main challenge of Multi-Object Tracking (MOT) lies in maintaining a continuous
trajectory for each target. Existing methods often learn reliable motion patterns to match the …

Towards real-time multi-object tracking

Z Wang, L Zheng, Y Liu, Y Li, S Wang - European conference on computer …, 2020 - Springer
Modern multiple object tracking (MOT) systems usually follow the tracking-by-detection
paradigm. It has 1) a detection model for target localization and 2) an appearance …

Blockchain-empowered distributed multicamera multitarget tracking in edge computing

S Wang, H Sheng, Y Zhang, D Yang… - IEEE Transactions …, 2023 - ieeexplore.ieee.org
The rapid increase in the volume of video data generated from edges in the Industrial
Internet of Things, opens up new possibilities for enhancing the application of video service …