Gaussian process regression for materials and molecules

VL Deringer, AP Bartók, N Bernstein… - Chemical …, 2021 - ACS Publications
We provide an introduction to Gaussian process regression (GPR) machine-learning
methods in computational materials science and chemistry. The focus of the present review …

Machine learning force fields

OT Unke, S Chmiela, HE Sauceda… - Chemical …, 2021 - ACS Publications
In recent years, the use of machine learning (ML) in computational chemistry has enabled
numerous advances previously out of reach due to the computational complexity of …

MACE: Higher order equivariant message passing neural networks for fast and accurate force fields

I Batatia, DP Kovacs, G Simm… - Advances in Neural …, 2022 - proceedings.neurips.cc
Creating fast and accurate force fields is a long-standing challenge in computational
chemistry and materials science. Recently, Equivariant Message Passing Neural Networks …

E (n) equivariant graph neural networks

VG Satorras, E Hoogeboom… - … conference on machine …, 2021 - proceedings.mlr.press
This paper introduces a new model to learn graph neural networks equivariant to rotations,
translations, reflections and permutations called E (n)-Equivariant Graph Neural Networks …

Learning local equivariant representations for large-scale atomistic dynamics

A Musaelian, S Batzner, A Johansson, L Sun… - Nature …, 2023 - nature.com
A simultaneously accurate and computationally efficient parametrization of the potential
energy surface of molecules and materials is a long-standing goal in the natural sciences …

Recent advances and applications of deep learning methods in materials science

K Choudhary, B DeCost, C Chen, A Jain… - npj Computational …, 2022 - nature.com
Deep learning (DL) is one of the fastest-growing topics in materials data science, with
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …

A universal graph deep learning interatomic potential for the periodic table

C Chen, SP Ong - Nature Computational Science, 2022 - nature.com
Interatomic potentials (IAPs), which describe the potential energy surface of atoms, are a
fundamental input for atomistic simulations. However, existing IAPs are either fitted to narrow …

Electrocatalysis in alkaline media and alkaline membrane-based energy technologies

Y Yang, CR Peltier, R Zeng, R Schimmenti, Q Li… - Chemical …, 2022 - ACS Publications
Hydrogen energy-based electrochemical energy conversion technologies offer the promise
of enabling a transition of the global energy landscape from fossil fuels to renewable energy …

Graph neural networks for materials science and chemistry

P Reiser, M Neubert, A Eberhard, L Torresi… - Communications …, 2022 - nature.com
Abstract Machine learning plays an increasingly important role in many areas of chemistry
and materials science, being used to predict materials properties, accelerate simulations …

Combining machine learning and computational chemistry for predictive insights into chemical systems

JA Keith, V Vassilev-Galindo, B Cheng… - Chemical …, 2021 - ACS Publications
Machine learning models are poised to make a transformative impact on chemical sciences
by dramatically accelerating computational algorithms and amplifying insights available from …