Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
[HTML][HTML] A review of uncertainty quantification in deep learning: Techniques, applications and challenges
Uncertainty quantification (UQ) methods play a pivotal role in reducing the impact of
uncertainties during both optimization and decision making processes. They have been …
uncertainties during both optimization and decision making processes. They have been …
RGB-D salient object detection: A survey
Salient object detection, which simulates human visual perception in locating the most
significant object (s) in a scene, has been widely applied to various computer vision tasks …
significant object (s) in a scene, has been widely applied to various computer vision tasks …
Feature shrinkage pyramid for camouflaged object detection with transformers
Vision transformers have recently shown strong global context modeling capabilities in
camouflaged object detection. However, they suffer from two major limitations: less effective …
camouflaged object detection. However, they suffer from two major limitations: less effective …
Zoom in and out: A mixed-scale triplet network for camouflaged object detection
The recently proposed camouflaged object detection (COD) attempts to segment objects that
are visually blended into their surroundings, which is extremely complex and difficult in real …
are visually blended into their surroundings, which is extremely complex and difficult in real …
LSNet: Lightweight spatial boosting network for detecting salient objects in RGB-thermal images
W Zhou, Y Zhu, J Lei, R Yang… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Most recent methods for RGB (red–green–blue)-thermal salient object detection (SOD)
involve several floating-point operations and have numerous parameters, resulting in slow …
involve several floating-point operations and have numerous parameters, resulting in slow …
Boundary-guided camouflaged object detection
Camouflaged object detection (COD), segmenting objects that are elegantly blended into
their surroundings, is a valuable yet challenging task. Existing deep-learning methods often …
their surroundings, is a valuable yet challenging task. Existing deep-learning methods often …
Visual saliency transformer
Existing state-of-the-art saliency detection methods heavily rely on CNN-based
architectures. Alternatively, we rethink this task from a convolution-free sequence-to …
architectures. Alternatively, we rethink this task from a convolution-free sequence-to …
Uncertainty inspired underwater image enhancement
A main challenge faced in the deep learning-based Underwater Image Enhancement (UIE)
is that the ground truth high-quality image is unavailable. Most of the existing methods first …
is that the ground truth high-quality image is unavailable. Most of the existing methods first …
CIR-Net: Cross-modality interaction and refinement for RGB-D salient object detection
Focusing on the issue of how to effectively capture and utilize cross-modality information in
RGB-D salient object detection (SOD) task, we present a convolutional neural network …
RGB-D salient object detection (SOD) task, we present a convolutional neural network …
SwinNet: Swin transformer drives edge-aware RGB-D and RGB-T salient object detection
Convolutional neural networks (CNNs) are good at extracting contexture features within
certain receptive fields, while transformers can model the global long-range dependency …
certain receptive fields, while transformers can model the global long-range dependency …