Unsupervised learning methods for molecular simulation data

A Glielmo, BE Husic, A Rodriguez, C Clementi… - Chemical …, 2021 - ACS Publications
Unsupervised learning is becoming an essential tool to analyze the increasingly large
amounts of data produced by atomistic and molecular simulations, in material science, solid …

From clustering to clustering ensemble selection: A review

K Golalipour, E Akbari, SS Hamidi, M Lee… - … Applications of Artificial …, 2021 - Elsevier
Clustering, as an unsupervised learning, is aimed at discovering the natural grou**s of a
set of patterns, points, or objects. In clustering algorithms, a significant problem is the …

An effective and efficient algorithm for K-means clustering with new formulation

F Nie, Z Li, R Wang, X Li - IEEE Transactions on Knowledge …, 2022 - ieeexplore.ieee.org
K-means is one of the most simple and popular clustering algorithms, which implemented as
a standard clustering method in most of machine learning researches. The goal of K-means …

q-means: A quantum algorithm for unsupervised machine learning

I Kerenidis, J Landman, A Luongo… - Advances in neural …, 2019 - proceedings.neurips.cc
Quantum information is a promising new paradigm for fast computations that can provide
substantial speedups for many algorithms we use today. Among them, quantum machine …

A survey on hypergraph mining: Patterns, tools, and generators

G Lee, F Bu, T Eliassi-Rad, K Shin - ACM Computing Surveys, 2024 - dl.acm.org
Hypergraphs, which belong to the family of higher-order networks, are a natural and
powerful choice for modeling group interactions in the real world. For example, when …

Low-rank approximation and regression in input sparsity time

KL Clarkson, DP Woodruff - Journal of the ACM (JACM), 2017 - dl.acm.org
We design a new distribution over m× n matrices S so that, for any fixed n× d matrix A of rank
r, with probability at least 9/10,∥ SAx∥ 2=(1±ε)∥ Ax∥ 2 simultaneously for all x∈ R d …

Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions

N Halko, PG Martinsson, JA Tropp - SIAM review, 2011 - SIAM
Low-rank matrix approximations, such as the truncated singular value decomposition and
the rank-revealing QR decomposition, play a central role in data analysis and scientific …

Randomized algorithms for matrices and data

MW Mahoney - Foundations and Trends® in Machine …, 2011 - nowpublishers.com
Randomized algorithms for very large matrix problems have received a great deal of
attention in recent years. Much of this work was motivated by problems in large-scale data …

Turning Big Data Into Tiny Data: Constant-Size Coresets for -Means, PCA, and Projective Clustering

D Feldman, M Schmidt, C Sohler - SIAM Journal on Computing, 2020 - SIAM
We develop and analyze a method to reduce the size of a very large set of data points in a
high-dimensional Euclidean space R^d to a small set of weighted points such that the result …

Generalized low rank models

M Udell, C Horn, R Zadeh, S Boyd - Foundations and Trends® …, 2016 - nowpublishers.com
Principal components analysis (PCA) is a well-known technique for approximating a tabular
data set by a low rank matrix. Here, we extend the idea of PCA to handle arbitrary data sets …