Medical image segmentation using deep learning: A survey
Deep learning has been widely used for medical image segmentation and a large number of
papers has been presented recording the success of deep learning in the field. A …
papers has been presented recording the success of deep learning in the field. A …
Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation
The medical imaging literature has witnessed remarkable progress in high-performing
segmentation models based on convolutional neural networks. Despite the new …
segmentation models based on convolutional neural networks. Despite the new …
Segment anything in medical images
Medical image segmentation is a critical component in clinical practice, facilitating accurate
diagnosis, treatment planning, and disease monitoring. However, existing methods, often …
diagnosis, treatment planning, and disease monitoring. However, existing methods, often …
Semi-supervised medical image segmentation through dual-task consistency
Deep learning-based semi-supervised learning (SSL) algorithms have led to promising
results in medical images segmentation and can alleviate doctors' expensive annotations by …
results in medical images segmentation and can alleviate doctors' expensive annotations by …
Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency
Abstract Despite that Convolutional Neural Networks (CNNs) have achieved promising
performance in many medical image segmentation tasks, they rely on a large set of labeled …
performance in many medical image segmentation tasks, they rely on a large set of labeled …
Semi-supervised medical image segmentation via cross teaching between cnn and transformer
Recently, deep learning with Convolutional Neural Networks (CNNs) and Transformers has
shown encouraging results in fully supervised medical image segmentation. However, it is …
shown encouraging results in fully supervised medical image segmentation. However, it is …
A survey on active learning and human-in-the-loop deep learning for medical image analysis
Fully automatic deep learning has become the state-of-the-art technique for many tasks
including image acquisition, analysis and interpretation, and for the extraction of clinically …
including image acquisition, analysis and interpretation, and for the extraction of clinically …
Interactive medical image segmentation using deep learning with image-specific fine tuning
Convolutional neural networks (CNNs) have achieved state-of-the-art performance for
automatic medical image segmentation. However, they have not demonstrated sufficiently …
automatic medical image segmentation. However, they have not demonstrated sufficiently …
Deep reinforcement learning in computer vision: a comprehensive survey
Deep reinforcement learning augments the reinforcement learning framework and utilizes
the powerful representation of deep neural networks. Recent works have demonstrated the …
the powerful representation of deep neural networks. Recent works have demonstrated the …
[HTML][HTML] NiftyNet: a deep-learning platform for medical imaging
Background and objectives Medical image analysis and computer-assisted intervention
problems are increasingly being addressed with deep-learning-based solutions …
problems are increasingly being addressed with deep-learning-based solutions …