Brief review of image denoising techniques

L Fan, F Zhang, H Fan, C Zhang - Visual computing for industry …, 2019 - Springer
With the explosion in the number of digital images taken every day, the demand for more
accurate and visually pleasing images is increasing. However, the images captured by …

Low rank tensor completion for multiway visual data

Z Long, Y Liu, L Chen, C Zhu - Signal processing, 2019 - Elsevier
Tensor completion recovers missing entries of multiway data. The missing of entries could
often be caused during the data acquisition and transformation. In this paper, we provide an …

Tensorf: Tensorial radiance fields

A Chen, Z Xu, A Geiger, J Yu, H Su - European conference on computer …, 2022 - Springer
We present TensoRF, a novel approach to model and reconstruct radiance fields. Unlike
NeRF that purely uses MLPs, we model the radiance field of a scene as a 4D tensor, which …

Recorrupted-to-recorrupted: Unsupervised deep learning for image denoising

T Pang, H Zheng, Y Quan, H Ji - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
Deep denoiser, the deep network for denoising, has been the focus of the recent
development on image denoising. In the last few years, there is an increasing interest in …

Rank minimization for snapshot compressive imaging

Y Liu, X Yuan, J Suo, DJ Brady… - IEEE transactions on …, 2018 - ieeexplore.ieee.org
Snapshot compressive imaging (SCI) refers to compressive imaging systems where multiple
frames are mapped into a single measurement, with video compressive imaging and …

Depth image denoising using nuclear norm and learning graph model

C Yan, Z Li, Y Zhang, Y Liu, X Ji, Y Zhang - ACM Transactions on …, 2020 - dl.acm.org
Depth image denoising is increasingly becoming the hot research topic nowadays, because
it reflects the three-dimensional scene and can be applied in various fields of computer …

Weighted nuclear norm minimization and its applications to low level vision

S Gu, Q **e, D Meng, W Zuo, X Feng… - International journal of …, 2017 - Springer
As a convex relaxation of the rank minimization model, the nuclear norm minimization
(NNM) problem has been attracting significant research interest in recent years. The …

A survey of sparse representation: algorithms and applications

Z Zhang, Y Xu, J Yang, X Li, D Zhang - IEEE access, 2015 - ieeexplore.ieee.org
Sparse representation has attracted much attention from researchers in fields of signal
processing, image processing, computer vision, and pattern recognition. Sparse …

Mixed noise removal in hyperspectral image via low-fibered-rank regularization

YB Zheng, TZ Huang, XL Zhao, TX Jiang… - … on Geoscience and …, 2019 - ieeexplore.ieee.org
The tensor tubal rank, defined based on the tensor singular value decomposition (t-SVD),
has obtained promising results in hyperspectral image (HSI) denoising. However, the …

Group-based sparse representation for image restoration

J Zhang, D Zhao, W Gao - IEEE transactions on image …, 2014 - ieeexplore.ieee.org
Traditional patch-based sparse representation modeling of natural images usually suffer
from two problems. First, it has to solve a large-scale optimization problem with high …