Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Brief review of image denoising techniques
L Fan, F Zhang, H Fan, C Zhang - Visual computing for industry …, 2019 - Springer
With the explosion in the number of digital images taken every day, the demand for more
accurate and visually pleasing images is increasing. However, the images captured by …
accurate and visually pleasing images is increasing. However, the images captured by …
Low rank tensor completion for multiway visual data
Tensor completion recovers missing entries of multiway data. The missing of entries could
often be caused during the data acquisition and transformation. In this paper, we provide an …
often be caused during the data acquisition and transformation. In this paper, we provide an …
Tensorf: Tensorial radiance fields
We present TensoRF, a novel approach to model and reconstruct radiance fields. Unlike
NeRF that purely uses MLPs, we model the radiance field of a scene as a 4D tensor, which …
NeRF that purely uses MLPs, we model the radiance field of a scene as a 4D tensor, which …
Recorrupted-to-recorrupted: Unsupervised deep learning for image denoising
Deep denoiser, the deep network for denoising, has been the focus of the recent
development on image denoising. In the last few years, there is an increasing interest in …
development on image denoising. In the last few years, there is an increasing interest in …
Rank minimization for snapshot compressive imaging
Snapshot compressive imaging (SCI) refers to compressive imaging systems where multiple
frames are mapped into a single measurement, with video compressive imaging and …
frames are mapped into a single measurement, with video compressive imaging and …
Depth image denoising using nuclear norm and learning graph model
Depth image denoising is increasingly becoming the hot research topic nowadays, because
it reflects the three-dimensional scene and can be applied in various fields of computer …
it reflects the three-dimensional scene and can be applied in various fields of computer …
Weighted nuclear norm minimization and its applications to low level vision
As a convex relaxation of the rank minimization model, the nuclear norm minimization
(NNM) problem has been attracting significant research interest in recent years. The …
(NNM) problem has been attracting significant research interest in recent years. The …
A survey of sparse representation: algorithms and applications
Sparse representation has attracted much attention from researchers in fields of signal
processing, image processing, computer vision, and pattern recognition. Sparse …
processing, image processing, computer vision, and pattern recognition. Sparse …
Mixed noise removal in hyperspectral image via low-fibered-rank regularization
The tensor tubal rank, defined based on the tensor singular value decomposition (t-SVD),
has obtained promising results in hyperspectral image (HSI) denoising. However, the …
has obtained promising results in hyperspectral image (HSI) denoising. However, the …
Group-based sparse representation for image restoration
Traditional patch-based sparse representation modeling of natural images usually suffer
from two problems. First, it has to solve a large-scale optimization problem with high …
from two problems. First, it has to solve a large-scale optimization problem with high …