[HTML][HTML] Machine learning for anomaly detection in particle physics

V Belis, P Odagiu, TK Aarrestad - Reviews in Physics, 2024 - Elsevier
The detection of out-of-distribution data points is a common task in particle physics. It is used
for monitoring complex particle detectors or for identifying rare and unexpected events that …

Advances in variational inference

C Zhang, J Bütepage, H Kjellström… - IEEE transactions on …, 2018 - ieeexplore.ieee.org
Many modern unsupervised or semi-supervised machine learning algorithms rely on
Bayesian probabilistic models. These models are usually intractable and thus require …

[TRÍCH DẪN][C] An introduction to variational autoencoders

DP Kingma, M Welling - Foundations and Trends® in …, 2019 - nowpublishers.com
An Introduction to Variational Autoencoders Page 1 An Introduction to Variational Autoencoders
Page 2 Other titles in Foundations and Trends R in Machine Learning Computational Optimal …

Monte carlo gradient estimation in machine learning

S Mohamed, M Rosca, M Figurnov, A Mnih - Journal of Machine Learning …, 2020 - jmlr.org
This paper is a broad and accessible survey of the methods we have at our disposal for
Monte Carlo gradient estimation in machine learning and across the statistical sciences: the …

Bayesian learning for neural networks: an algorithmic survey

M Magris, A Iosifidis - Artificial Intelligence Review, 2023 - Springer
The last decade witnessed a growing interest in Bayesian learning. Yet, the technicality of
the topic and the multitude of ingredients involved therein, besides the complexity of turning …

Bayesian neural networks: An introduction and survey

E Goan, C Fookes - Case Studies in Applied Bayesian Data Science …, 2020 - Springer
Abstract Neural Networks (NNs) have provided state-of-the-art results for many challenging
machine learning tasks such as detection, regression and classification across the domains …

deepDR: a network-based deep learning approach to in silico drug repositioning

X Zeng, S Zhu, X Liu, Y Zhou, R Nussinov… - …, 2019 - academic.oup.com
Motivation Traditional drug discovery and development are often time-consuming and high
risk. Repurposing/repositioning of approved drugs offers a relatively low-cost and high …

An optimization-centric view on Bayes' rule: Reviewing and generalizing variational inference

J Knoblauch, J Jewson, T Damoulas - Journal of Machine Learning …, 2022 - jmlr.org
We advocate an optimization-centric view of Bayesian inference. Our inspiration is the
representation of Bayes' rule as infinite-dimensional optimization (Csisz´ r, 1975; Donsker …

Virtual adversarial training: a regularization method for supervised and semi-supervised learning

T Miyato, S Maeda, M Koyama… - IEEE transactions on …, 2018 - ieeexplore.ieee.org
We propose a new regularization method based on virtual adversarial loss: a new measure
of local smoothness of the conditional label distribution given input. Virtual adversarial loss …

Variational inference via Wasserstein gradient flows

M Lambert, S Chewi, F Bach… - Advances in Neural …, 2022 - proceedings.neurips.cc
Abstract Along with Markov chain Monte Carlo (MCMC) methods, variational inference (VI)
has emerged as a central computational approach to large-scale Bayesian inference …