Large language models for software engineering: A systematic literature review

X Hou, Y Zhao, Y Liu, Z Yang, K Wang, L Li… - ACM Transactions on …, 2024 - dl.acm.org
Large Language Models (LLMs) have significantly impacted numerous domains, including
Software Engineering (SE). Many recent publications have explored LLMs applied to …

A comprehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt

Y Cao, S Li, Y Liu, Z Yan, Y Dai, PS Yu… - arxiv preprint arxiv …, 2023 - arxiv.org
Recently, ChatGPT, along with DALL-E-2 and Codex, has been gaining significant attention
from society. As a result, many individuals have become interested in related resources and …

Is your code generated by chatgpt really correct? rigorous evaluation of large language models for code generation

J Liu, CS **a, Y Wang, L Zhang - Advances in Neural …, 2024 - proceedings.neurips.cc
Program synthesis has been long studied with recent approaches focused on directly using
the power of Large Language Models (LLMs) to generate code. Programming benchmarks …

[PDF][PDF] DecodingTrust: A Comprehensive Assessment of Trustworthiness in GPT Models.

B Wang, W Chen, H Pei, C **e, M Kang, C Zhang, C Xu… - NeurIPS, 2023 - blogs.qub.ac.uk
Abstract Generative Pre-trained Transformer (GPT) models have exhibited exciting progress
in their capabilities, capturing the interest of practitioners and the public alike. Yet, while the …

[HTML][HTML] A survey of GPT-3 family large language models including ChatGPT and GPT-4

KS Kalyan - Natural Language Processing Journal, 2024 - Elsevier
Large language models (LLMs) are a special class of pretrained language models (PLMs)
obtained by scaling model size, pretraining corpus and computation. LLMs, because of their …

Generalizing to unseen domains: A survey on domain generalization

J Wang, C Lan, C Liu, Y Ouyang, T Qin… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Machine learning systems generally assume that the training and testing distributions are
the same. To this end, a key requirement is to develop models that can generalize to unseen …

Unixcoder: Unified cross-modal pre-training for code representation

D Guo, S Lu, N Duan, Y Wang, M Zhou… - arxiv preprint arxiv …, 2022 - arxiv.org
Pre-trained models for programming languages have recently demonstrated great success
on code intelligence. To support both code-related understanding and generation tasks …

Codet5+: Open code large language models for code understanding and generation

Y Wang, H Le, AD Gotmare, NDQ Bui, J Li… - arxiv preprint arxiv …, 2023 - arxiv.org
Large language models (LLMs) pretrained on vast source code have achieved prominent
progress in code intelligence. However, existing code LLMs have two main limitations in …

Coderl: Mastering code generation through pretrained models and deep reinforcement learning

H Le, Y Wang, AD Gotmare… - Advances in Neural …, 2022 - proceedings.neurips.cc
Program synthesis or code generation aims to generate a program that satisfies a problem
specification. Recent approaches using large-scale pretrained language models (LMs) have …

Unified pre-training for program understanding and generation

WU Ahmad, S Chakraborty, B Ray… - arxiv preprint arxiv …, 2021 - arxiv.org
Code summarization and generation empower conversion between programming language
(PL) and natural language (NL), while code translation avails the migration of legacy code …