2D materials in flexible electronics: recent advances and future prospectives
Flexible electronics have recently gained considerable attention due to their potential to
provide new and innovative solutions to a wide range of challenges in various electronic …
provide new and innovative solutions to a wide range of challenges in various electronic …
Strain engineering of two‐dimensional materials: Methods, properties, and applications
S Yang, Y Chen, C Jiang - InfoMat, 2021 - Wiley Online Library
Abstract Two‐dimensional (2D) materials have attracted extensive research interests due to
their excellent properties related to unique structure. Strain engineering, as an important …
their excellent properties related to unique structure. Strain engineering, as an important …
Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K
In recent years, quantum-dot-like single-photon emitters in atomically thin van der Waals
materials have become a promising platform for future on-chip scalable quantum light …
materials have become a promising platform for future on-chip scalable quantum light …
Enhanced light–matter interaction in two-dimensional transition metal dichalcogenides
Abstract Two-dimensional (2D) transition metal dichalcogenide (TMDC) materials, such as
MoS 2, WS 2, MoSe 2, and WSe 2, have received extensive attention in the past decade due …
MoS 2, WS 2, MoSe 2, and WSe 2, have received extensive attention in the past decade due …
Imaging strain-localized excitons in nanoscale bubbles of monolayer WSe2 at room temperature
In monolayer transition-metal dichalcogenides, localized strain can be used to design
nanoarrays of single photon sources. Despite strong empirical correlation, the nanoscale …
nanoarrays of single photon sources. Despite strong empirical correlation, the nanoscale …
Strain-tuning of the electronic, optical, and vibrational properties of two-dimensional crystals
The variegated family of two-dimensional (2D) crystals has developed rapidly since the
isolation of its forerunner: Graphene. Their planeconfined nature is typically associated with …
isolation of its forerunner: Graphene. Their planeconfined nature is typically associated with …
Straining techniques for strain engineering of 2D materials towards flexible straintronic applications
Straintronics of two-dimensional (2D) materials offers enormous promise for both
fundamental research and smart technologies. Strain engineering of 2D materials has …
fundamental research and smart technologies. Strain engineering of 2D materials has …
Locally strained 2D materials: Preparation, properties, and applications
Abstract 2D materials are promising for strain engineering due to their atomic thickness and
exceptional mechanical properties. In particular, non‐uniform and localized strain can be …
exceptional mechanical properties. In particular, non‐uniform and localized strain can be …
Dynamics and efficient conversion of excitons to trions in non-uniformly strained monolayer WS2
In recent years, there has been ongoing effort in achieving efficient transport of excitons in
monolayer transition metal dichalcogenides subjected to highly non-uniform strain. Here we …
monolayer transition metal dichalcogenides subjected to highly non-uniform strain. Here we …
Exciton optics, dynamics, and transport in atomically thin semiconductors
Atomically thin semiconductors such as transition metal dichalcogenide (TMD) monolayers
exhibit a very strong Coulomb interaction, giving rise to a rich exciton landscape. This makes …
exhibit a very strong Coulomb interaction, giving rise to a rich exciton landscape. This makes …