Graph signal processing: Overview, challenges, and applications

A Ortega, P Frossard, J Kovačević… - Proceedings of the …, 2018 - ieeexplore.ieee.org
Research in graph signal processing (GSP) aims to develop tools for processing data
defined on irregular graph domains. In this paper, we first provide an overview of core ideas …

Graph signal processing for machine learning: A review and new perspectives

X Dong, D Thanou, L Toni, M Bronstein… - IEEE Signal …, 2020 - ieeexplore.ieee.org
The effective representation, processing, analysis, and visualization of large-scale structured
data, especially those related to complex domains, such as networks and graphs, are one of …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD Conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

Graph learning: A survey

F **a, K Sun, S Yu, A Aziz, L Wan… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Graphs are widely used as a popular representation of the network structure of connected
data. Graph data can be found in a broad spectrum of application domains such as social …

Contrastive and non-contrastive self-supervised learning recover global and local spectral embedding methods

R Balestriero, Y LeCun - Advances in Neural Information …, 2022 - proceedings.neurips.cc
Abstract Self-Supervised Learning (SSL) surmises that inputs and pairwise positive
relationships are enough to learn meaningful representations. Although SSL has recently …

Iterative deep graph learning for graph neural networks: Better and robust node embeddings

Y Chen, L Wu, M Zaki - Advances in neural information …, 2020 - proceedings.neurips.cc
In this paper, we propose an end-to-end graph learning framework, namely\textbf {I}
terative\textbf {D} eep\textbf {G} raph\textbf {L} earning (\alg), for jointly and iteratively …

Connecting the dots: Identifying network structure via graph signal processing

G Mateos, S Segarra, AG Marques… - IEEE Signal Processing …, 2019 - ieeexplore.ieee.org
Network topology inference is a significant problem in network science. Most graph signal
processing (GSP) efforts to date assume that the underlying network is known and then …

Learning graphs from data: A signal representation perspective

X Dong, D Thanou, M Rabbat… - IEEE Signal Processing …, 2019 - ieeexplore.ieee.org
The construction of a meaningful graph topology plays a crucial role in the effective
representation, processing, analysis, and visualization of structured data. When a natural …

Graph representation learning: a survey

F Chen, YC Wang, B Wang, CCJ Kuo - APSIPA Transactions on …, 2020 - cambridge.org
Research on graph representation learning has received great attention in recent years
since most data in real-world applications come in the form of graphs. High-dimensional …

[HTML][HTML] Signal processing on higher-order networks: Livin'on the edge... and beyond

MT Schaub, Y Zhu, JB Seby, TM Roddenberry… - Signal Processing, 2021 - Elsevier
In this tutorial, we provide a didactic treatment of the emerging topic of signal processing on
higher-order networks. Drawing analogies from discrete and graph signal processing, we …