Deep reinforcement learning for robotics: A survey of real-world successes

C Tang, B Abbatematteo, J Hu… - Annual Review of …, 2024 - annualreviews.org
Reinforcement learning (RL), particularly its combination with deep neural networks,
referred to as deep RL (DRL), has shown tremendous promise across a wide range of …

How to train your robot with deep reinforcement learning: lessons we have learned

J Ibarz, J Tan, C Finn, M Kalakrishnan… - … Journal of Robotics …, 2021 - journals.sagepub.com
Deep reinforcement learning (RL) has emerged as a promising approach for autonomously
acquiring complex behaviors from low-level sensor observations. Although a large portion of …

A survey of zero-shot generalisation in deep reinforcement learning

R Kirk, A Zhang, E Grefenstette, T Rocktäschel - Journal of Artificial …, 2023 - jair.org
The study of zero-shot generalisation (ZSG) in deep Reinforcement Learning (RL) aims to
produce RL algorithms whose policies generalise well to novel unseen situations at …

Bc-z: Zero-shot task generalization with robotic imitation learning

E Jang, A Irpan, M Khansari… - … on Robot Learning, 2022 - proceedings.mlr.press
In this paper, we study the problem of enabling a vision-based robotic manipulation system
to generalize to novel tasks, a long-standing challenge in robot learning. We approach the …

Kubric: A scalable dataset generator

K Greff, F Belletti, L Beyer, C Doersch… - Proceedings of the …, 2022 - openaccess.thecvf.com
Data is the driving force of machine learning, with the amount and quality of training data
often being more important for the performance of a system than architecture and training …

Sim-to-real transfer in deep reinforcement learning for robotics: a survey

W Zhao, JP Queralta… - 2020 IEEE symposium …, 2020 - ieeexplore.ieee.org
Deep reinforcement learning has recently seen huge success across multiple areas in the
robotics domain. Owing to the limitations of gathering real-world data, ie, sample inefficiency …

A review on generative adversarial networks: Algorithms, theory, and applications

J Gui, Z Sun, Y Wen, D Tao, J Ye - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Generative adversarial networks (GANs) have recently become a hot research topic;
however, they have been studied since 2014, and a large number of algorithms have been …

Deep learning approaches to grasp synthesis: A review

R Newbury, M Gu, L Chumbley… - IEEE Transactions …, 2023 - ieeexplore.ieee.org
Gras** is the process of picking up an object by applying forces and torques at a set of
contacts. Recent advances in deep learning methods have allowed rapid progress in robotic …

A survey on learning-based robotic gras**

K Kleeberger, R Bormann, W Kraus, MF Huber - Current Robotics Reports, 2020 - Springer
Abstract Purpose of Review This review provides a comprehensive overview of machine
learning approaches for vision-based robotic gras** and manipulation. Current trends and …

[КНИГА][B] Synthetic data for deep learning

SI Nikolenko - 2021 - Springer
You are holding in your hands… oh, come on, who holds books like this in their hands
anymore? Anyway, you are reading this, and it means that I have managed to release one of …