A comprehensive survey of continual learning: Theory, method and application

L Wang, X Zhang, H Su, J Zhu - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
To cope with real-world dynamics, an intelligent system needs to incrementally acquire,
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …

Structured pruning for deep convolutional neural networks: A survey

Y He, L **ao - IEEE transactions on pattern analysis and …, 2023 - ieeexplore.ieee.org
The remarkable performance of deep Convolutional neural networks (CNNs) is generally
attributed to their deeper and wider architectures, which can come with significant …

Adding conditional control to text-to-image diffusion models

L Zhang, A Rao, M Agrawala - Proceedings of the IEEE/CVF …, 2023 - openaccess.thecvf.com
We present ControlNet, a neural network architecture to add spatial conditioning controls to
large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large …

Edge learning using a fully integrated neuro-inspired memristor chip

W Zhang, P Yao, B Gao, Q Liu, D Wu, Q Zhang, Y Li… - Science, 2023 - science.org
Learning is highly important for edge intelligence devices to adapt to different application
scenes and owners. Current technologies for training neural networks require moving …

Boosting continual learning of vision-language models via mixture-of-experts adapters

J Yu, Y Zhuge, L Zhang, P Hu… - Proceedings of the …, 2024 - openaccess.thecvf.com
Continual learning can empower vision-language models to continuously acquire new
knowledge without the need for access to the entire historical dataset. However mitigating …

Dualprompt: Complementary prompting for rehearsal-free continual learning

Z Wang, Z Zhang, S Ebrahimi, R Sun, H Zhang… - European conference on …, 2022 - Springer
Continual learning aims to enable a single model to learn a sequence of tasks without
catastrophic forgetting. Top-performing methods usually require a rehearsal buffer to store …

Learn from others and be yourself in heterogeneous federated learning

W Huang, M Ye, B Du - … of the IEEE/CVF conference on …, 2022 - openaccess.thecvf.com
Federated learning has emerged as an important distributed learning paradigm, which
normally involves collaborative updating with others and local updating on private data …

Learning to prompt for continual learning

Z Wang, Z Zhang, CY Lee, H Zhang… - Proceedings of the …, 2022 - openaccess.thecvf.com
The mainstream paradigm behind continual learning has been to adapt the model
parameters to non-stationary data distributions, where catastrophic forgetting is the central …

Task arithmetic in the tangent space: Improved editing of pre-trained models

G Ortiz-Jimenez, A Favero… - Advances in Neural …, 2023 - proceedings.neurips.cc
Task arithmetic has recently emerged as a cost-effective and scalable approach to edit pre-
trained models directly in weight space: By adding the fine-tuned weights of different tasks …

Toward transparent ai: A survey on interpreting the inner structures of deep neural networks

T Räuker, A Ho, S Casper… - 2023 ieee conference …, 2023 - ieeexplore.ieee.org
The last decade of machine learning has seen drastic increases in scale and capabilities.
Deep neural networks (DNNs) are increasingly being deployed in the real world. However …