Recent advances and applications of surrogate models for finite element method computations: a review

J Kudela, R Matousek - Soft Computing, 2022 - Springer
The utilization of surrogate models to approximate complex systems has recently gained
increased popularity. Because of their capability to deal with black-box problems and lower …

Advances in computational intelligence of polymer composite materials: machine learning assisted modeling, analysis and design

A Sharma, T Mukhopadhyay, SM Rangappa… - … Methods in Engineering, 2022 - Springer
The superior multi-functional properties of polymer composites have made them an ideal
choice for aerospace, automobile, marine, civil, and many other technologically demanding …

Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design

T Lookman, PV Balachandran, D Xue… - npj Computational …, 2019 - nature.com
One of the main challenges in materials discovery is efficiently exploring the vast search
space for targeted properties as approaches that rely on trial-and-error are impractical. We …

A transfer learning approach for microstructure reconstruction and structure-property predictions

X Li, Y Zhang, H Zhao, C Burkhart, LC Brinson… - Scientific reports, 2018 - nature.com
Stochastic microstructure reconstruction has become an indispensable part of computational
materials science, but ongoing developments are specific to particular material systems. In …

Microstructural materials design via deep adversarial learning methodology

Z Yang, X Li, L Catherine Brinson… - Journal of …, 2018 - asmedigitalcollection.asme.org
Identifying the key microstructure representations is crucial for computational materials
design (CMD). However, existing microstructure characterization and reconstruction (MCR) …

Machine learning in materials design and discovery: Examples from the present and suggestions for the future

JE Gubernatis, T Lookman - Physical Review Materials, 2018 - APS
We provide a brief discussion of “What is machine learning?” and then give a number of
examples of how these methods have recently aided the design and discovery of new …

Machine-learning-assisted de novo design of organic molecules and polymers: opportunities and challenges

G Chen, Z Shen, A Iyer, UF Ghumman, S Tang, J Bi… - Polymers, 2020 - mdpi.com
Organic molecules and polymers have a broad range of applications in biomedical,
chemical, and materials science fields. Traditional design approaches for organic molecules …

Materials informatics: From the atomic-level to the continuum

JM Rickman, T Lookman, SV Kalinin - Acta Materialia, 2019 - Elsevier
In recent years materials informatics, which is the application of data science to problems in
materials science and engineering, has emerged as a powerful tool for materials discovery …

Machine-learning-based predictions of polymer and postconsumer recycled polymer properties: a comprehensive review

N Andraju, GW Curtzwiler, Y Ji, E Kozliak… - … Applied Materials & …, 2022 - ACS Publications
There has been a tremendous increase in demand for virgin and postconsumer recycled
(PCR) polymers due to their wide range of chemical and physical characteristics. Despite …

Prediction of tensile strength of polymer carbon nanotube composites using practical machine learning method

TT Le - Journal of Composite Materials, 2021 - journals.sagepub.com
This paper is devoted to the development and construction of a practical Machine Learning
(ML)-based model for the prediction of tensile strength of polymer carbon nanotube (CNTs) …