Multi-agent reinforcement learning: A review of challenges and applications

L Canese, GC Cardarilli, L Di Nunzio, R Fazzolari… - Applied Sciences, 2021 - mdpi.com
In this review, we present an analysis of the most used multi-agent reinforcement learning
algorithms. Starting with the single-agent reinforcement learning algorithms, we focus on the …

Multi-agent deep reinforcement learning for multi-robot applications: A survey

J Orr, A Dutta - Sensors, 2023 - mdpi.com
Deep reinforcement learning has produced many success stories in recent years. Some
example fields in which these successes have taken place include mathematics, games …

Multi-agent reinforcement learning: A selective overview of theories and algorithms

K Zhang, Z Yang, T Başar - Handbook of reinforcement learning and …, 2021 - Springer
Recent years have witnessed significant advances in reinforcement learning (RL), which
has registered tremendous success in solving various sequential decision-making problems …

An analysis of the robustness of UAV agriculture field coverage using multi-agent reinforcement learning

N Marwah, VK Singh, GS Kashyap, S Wazir - International Journal of …, 2023 - Springer
Agriculture is a vital sector in develo** nations such as India, and the use of autonomous
vehicles and Internet of Things (IoT) technology has the potential to revolutionize farming …

Single and multi-agent deep reinforcement learning for AI-enabled wireless networks: A tutorial

A Feriani, E Hossain - IEEE Communications Surveys & …, 2021 - ieeexplore.ieee.org
Deep Reinforcement Learning (DRL) has recently witnessed significant advances that have
led to multiple successes in solving sequential decision-making problems in various …

Review of deep reinforcement learning for robot manipulation

H Nguyen, H La - 2019 Third IEEE international conference on …, 2019 - ieeexplore.ieee.org
Reinforcement learning combined with neural networks has recently led to a wide range of
successes in learning policies in different domains. For robot manipulation, reinforcement …

Reinforcement learning for mobile robotics exploration: A survey

LC Garaffa, M Basso, AA Konzen… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Efficient exploration of unknown environments is a fundamental precondition for modern
autonomous mobile robot applications. Aiming to design robust and effective robotic …

Artificial intelligence for UAV-enabled wireless networks: A survey

MA Lahmeri, MA Kishk… - IEEE Open Journal of the …, 2021 - ieeexplore.ieee.org
Unmanned aerial vehicles (UAVs) are considered as one of the promising technologies for
the next-generation wireless communication networks. Their mobility and their ability to …

[HTML][HTML] A survey on multi-agent reinforcement learning and its application

Z Ning, L **e - Journal of Automation and Intelligence, 2024 - Elsevier
Multi-agent reinforcement learning (MARL) has been a rapidly evolving field. This paper
presents a comprehensive survey of MARL and its applications. We trace the historical …

On improving model-free algorithms for decentralized multi-agent reinforcement learning

W Mao, L Yang, K Zhang… - … Conference on Machine …, 2022 - proceedings.mlr.press
Multi-agent reinforcement learning (MARL) algorithms often suffer from an exponential
sample complexity dependence on the number of agents, a phenomenon known as the …