Boosting crowd counting via multifaceted attention

H Lin, Z Ma, R Ji, Y Wang… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
This paper focuses on crowd counting. As large-scale variations often exist within crowd
images, neither fixed-size convolution kernel of CNN nor fixed-size attentions of recent …

Rethinking spatial invariance of convolutional networks for object counting

ZQ Cheng, Q Dai, H Li, J Song, X Wu… - Proceedings of the …, 2022 - openaccess.thecvf.com
Previous work generally believes that improving the spatial invariance of convolutional
networks is the key to object counting. However, after verifying several mainstream counting …

An end-to-end transformer model for crowd localization

D Liang, W Xu, X Bai - European Conference on Computer Vision, 2022 - Springer
Crowd localization, predicting head positions, is a more practical and high-level task than
simply counting. Existing methods employ pseudo-bounding boxes or pre-designed …

Deep learning in crowd counting: A survey

L Deng, Q Zhou, S Wang, JM Górriz… - CAAI Transactions on …, 2024 - Wiley Online Library
Counting high‐density objects quickly and accurately is a popular area of research. Crowd
counting has significant social and economic value and is a major focus in artificial …

Crowd counting in the frequency domain

W Shu, J Wan, KC Tan, S Kwong… - Proceedings of the …, 2022 - openaccess.thecvf.com
This paper investigates crowd counting in the frequency domain, which is a novel direction
compared to the traditional view in the spatial domain. By transforming the density map into …

Steerer: Resolving scale variations for counting and localization via selective inheritance learning

T Han, L Bai, L Liu, W Ouyang - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Scale variation is a deep-rooted problem in object counting, which has not been effectively
addressed by existing scale-aware algorithms. An important factor is that they typically …

Optimal transport minimization: Crowd localization on density maps for semi-supervised counting

W Lin, AB Chan - Proceedings of the IEEE/CVF Conference …, 2023 - openaccess.thecvf.com
The accuracy of crowd counting in images has improved greatly in recent years due to the
development of deep neural networks for predicting crowd density maps. However, most …

Crowdclip: Unsupervised crowd counting via vision-language model

D Liang, J **e, Z Zou, X Ye, W Xu… - Proceedings of the …, 2023 - openaccess.thecvf.com
Supervised crowd counting relies heavily on costly manual labeling, which is difficult and
expensive, especially in dense scenes. To alleviate the problem, we propose a novel …

Point-query quadtree for crowd counting, localization, and more

C Liu, H Lu, Z Cao, T Liu - Proceedings of the IEEE/CVF …, 2023 - openaccess.thecvf.com
We show that crowd counting can be viewed as a decomposable point querying process.
This formulation enables arbitrary points as input and jointly reasons whether the points are …

CGINet: Cross-modality grade interaction network for RGB-T crowd counting

Y Pan, W Zhou, X Qian, S Mao, R Yang, L Yu - Engineering Applications of …, 2023 - Elsevier
Crowd counting is a fundamental and challenging task that requires rich information to
generate a pixel-level crowd density map. Additionally, the development of thermal sensing …