OntoED: Low-resource event detection with ontology embedding

S Deng, N Zhang, L Li, H Chen, H Tou, M Chen… - arxiv preprint arxiv …, 2021 - arxiv.org
Event Detection (ED) aims to identify event trigger words from a given text and classify it into
an event type. Most of current methods to ED rely heavily on training instances, and almost …

Semantic web machine learning systems: An analysis of system patterns

L Waltersdorfer, A Breit, FJ Ekaputra… - Compendium of …, 2023 - ebooks.iospress.nl
In line with the general trend in artificial intelligence research to create intelligent systems
that combine learning and symbolic techniques (aka neuro-symbolic systems), a new sub …

DTaxa: An actor–critic for automatic taxonomy induction

Y Han, Y Lang, M Cheng, Z Geng, G Chen… - … Applications of Artificial …, 2021 - Elsevier
Automatic taxonomy induction is a challenging task in the field of natural language
understanding (NLU) and information retrieval (IR) because it requires machine learning …

A novel hybrid genetic-whale optimization model for ontology learning from Arabic text

RM Ghoniem, N Alhelwa, K Shaalan - Algorithms, 2019 - mdpi.com
Ontologies are used to model knowledge in several domains of interest, such as the
biomedical domain. Conceptualization is the basic task for ontology building. Concepts are …

Spiking Equilibrium Convolutional Neural Network for Spatial Urban Ontology

P Sambandam, D Yuvaraj, P Padmakumari… - Neural Processing …, 2023 - Springer
Urban analysis uses new data integration with computational methods to gain insight into
urban methodologies. But the challenge is how to populate automatically from various urban …

[HTML][HTML] Семантический анализ научных текстов: опыт создания корпуса и построения языковых моделей

ЕП Бручес, АЕ Паульс, ТВ Батура… - … продукты и системы, 2021 - cyberleninka.ru
Данная статья посвящена исследованию методов автоматического обнаружения
сущностей (NER) и классификации семантических отношений (RC) в научных текстах …

An encoder–decoder approach to mine conditions for engineering textual data

FO Gallego, R Corchuelo - Engineering Applications of Artificial …, 2020 - Elsevier
Data engineering seeks to support artificial intelligence processes that extract knowledge
from raw data. Many such data are rendered in natural language from which entity-relation …

Context-aware Relation Classification based on Deep Learning

M Mallek, R Guetari, S Fournier… - 2022 IEEE 34th …, 2022 - ieeexplore.ieee.org
Modern information supports carry heterogeneous data, in such large quantities that the
traditional means of processing become obsolete and inefficient to meet today's needs. In …

[PDF][PDF] SynED: A Syntax-Based Low-Resource Event Detection Method for New Event Types

R Fu, H Wang, X Zhang, J Zhou, Y Yan - International Journal of Innovative …, 2023 - ijicic.org
Event detection (ED) is an important and challenging information extraction task, which aims
to identify triggers from unstructured text and classify them into an event type. Most of the …

The impact of semantic linguistic features in relation extraction: A logical relational learning approach

R Lima, B Espinasse, F Freitas - Proceedings of the International …, 2019 - aclanthology.org
Relation Extraction (RE) consists in detecting and classifying semantic relations between
entities in a sentence. The vast majority of the state-of-the-art RE systems relies on …