From materials to cell: state-of-the-art and prospective technologies for lithium-ion battery electrode processing

J Li, J Fleetwood, WB Hawley, W Kays - Chemical Reviews, 2021 - ACS Publications
Electrode processing plays an important role in advancing lithium-ion battery technologies
and has a significant impact on cell energy density, manufacturing cost, and throughput …

Fast charging of lithium‐ion batteries: a review of materials aspects

M Weiss, R Ruess, J Kasnatscheew… - Advanced Energy …, 2021 - Wiley Online Library
Fast charging is considered to be a key requirement for widespread economic success of
electric vehicles. Current lithium‐ion batteries (LIBs) offer high energy density enabling …

Capacity Fading of Ni-Rich Li[NixCoyMn1–xy]O2 (0.6 ≤ x ≤ 0.95) Cathodes for High-Energy-Density Lithium-Ion Batteries: Bulk or Surface Degradation?

HH Ryu, KJ Park, CS Yoon, YK Sun - Chemistry of materials, 2018 - ACS Publications
Ni-rich Li [Ni x Co y Mn1–x–y] O2 cathodes (x= 0.6, 0.8, 0.9, and 0.95) were tested to
characterize the capacity fading mechanism of extremely rich Ni compositions. Increasing …

Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries

M Yoon, Y Dong, J Hwang, J Sung, H Cha, K Ahn… - Nature Energy, 2021 - nature.com
Engineered polycrystalline electrodes are critical to the cycling stability and safety of lithium-
ion batteries, yet it is challenging to construct high-quality coatings at both the primary-and …

Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries

S Yin, W Deng, J Chen, X Gao, G Zou, H Hou, X Ji - Nano Energy, 2021 - Elsevier
Ni-rich layered transition metal oxide is one of the most promising cathode materials for the
next generation lithium-based automotive batteries due to its excellent electrochemical …

Polycrystalline and single crystalline NCM cathode materials—quantifying particle cracking, active surface area, and lithium diffusion

E Trevisanello, R Ruess, G Conforto… - Advanced Energy …, 2021 - Wiley Online Library
Representatives of the LixNi1− y− zCoyMnzO2 (NCM) family of cathode active materials
(CAMs) with high nickel content are becoming the CAM of choice for high performance …

Chemomechanics of rechargeable batteries: status, theories, and perspectives

LS de Vasconcelos, R Xu, Z Xu, J Zhang… - Chemical …, 2022 - ACS Publications
Chemomechanics is an old subject, yet its importance has been revived in rechargeable
batteries where the mechanical energy and damage associated with redox reactions can …

Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives

ST Myung, F Maglia, KJ Park, CS Yoon… - ACS Energy …, 2017 - ACS Publications
Future generations of electric vehicles require driving ranges of at least 300 miles to
successfully penetrate the mass consumer market. A significant improvement in the energy …

Nickel‐rich layered lithium transition‐metal oxide for high‐energy lithium‐ion batteries

W Liu, P Oh, X Liu, MJ Lee, W Cho… - Angewandte Chemie …, 2015 - Wiley Online Library
High energy‐density lithium‐ion batteries are in demand for portable electronic devices and
electrical vehicles. Since the energy density of the batteries relies heavily on the cathode …

Degradation mechanism of Ni-rich cathode materials: focusing on particle interior

NY Park, GT Park, SB Kim, W Jung, BC Park… - ACS Energy …, 2022 - ACS Publications
In the development of Li-ion batteries for electric vehicles (EVs), Ni-rich layered oxides are
anticipated to be promising cathode materials. However, the rapid capacity fading …