Motion planning for autonomous driving: The state of the art and future perspectives

S Teng, X Hu, P Deng, B Li, Y Li, Y Ai… - IEEE Transactions …, 2023 - ieeexplore.ieee.org
Intelligent vehicles (IVs) have gained worldwide attention due to their increased
convenience, safety advantages, and potential commercial value. Despite predictions of …

A survey on imitation learning techniques for end-to-end autonomous vehicles

L Le Mero, D Yi, M Dianati… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
The state-of-the-art decision and planning approaches for autonomous vehicles have
moved away from manually designed systems, instead focusing on the utilisation of large …

A survey on trajectory-prediction methods for autonomous driving

Y Huang, J Du, Z Yang, Z Zhou… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
In order to drive safely in a dynamic environment, autonomous vehicles should be able to
predict the future states of traffic participants nearby, especially surrounding vehicles, similar …

A survey of deep learning techniques for autonomous driving

S Grigorescu, B Trasnea, T Cocias… - Journal of field …, 2020 - Wiley Online Library
The last decade witnessed increasingly rapid progress in self‐driving vehicle technology,
mainly backed up by advances in the area of deep learning and artificial intelligence (AI) …

Human action recognition and prediction: A survey

Y Kong, Y Fu - International Journal of Computer Vision, 2022 - Springer
Derived from rapid advances in computer vision and machine learning, video analysis tasks
have been moving from inferring the present state to predicting the future state. Vision-based …

A survey of inverse reinforcement learning

S Adams, T Cody, PA Beling - Artificial Intelligence Review, 2022 - Springer
Learning from demonstration, or imitation learning, is the process of learning to act in an
environment from examples provided by a teacher. Inverse reinforcement learning (IRL) is a …

Desire: Distant future prediction in dynamic scenes with interacting agents

N Lee, W Choi, P Vernaza, CB Choy… - Proceedings of the …, 2017 - openaccess.thecvf.com
Abstract We introduce a Deep Stochastic IOC RNN Encoder-decoder framework, DESIRE,
for the task of future predictions of multiple interacting agents in dynamic scenes. DESIRE …

Machine learning for autonomous vehicle's trajectory prediction: A comprehensive survey, challenges, and future research directions

V Bharilya, N Kumar - Vehicular Communications, 2024 - Elsevier
The significant contribution of human errors, accounting for approximately 94%(with a
margin of±2.2%), to road crashes leading to casualties, vehicle damages, and safety …

Deep learning-based autonomous driving systems: A survey of attacks and defenses

Y Deng, T Zhang, G Lou, X Zheng… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
The rapid development of artificial intelligence, especially deep learning technology, has
advanced autonomous driving systems (ADSs) by providing precise control decisions to …

Interactive imitation learning in robotics: A survey

C Celemin, R Pérez-Dattari, E Chisari… - … and Trends® in …, 2022 - nowpublishers.com
Interactive Imitation Learning in Robotics: A Survey Page 1 Interactive Imitation Learning in
Robotics: A Survey Page 2 Other titles in Foundations and Trends® in Robotics A Survey on …