[HTML][HTML] Deep learning in multimodal remote sensing data fusion: A comprehensive review

J Li, D Hong, L Gao, J Yao, K Zheng, B Zhang… - International Journal of …, 2022 - Elsevier
With the extremely rapid advances in remote sensing (RS) technology, a great quantity of
Earth observation (EO) data featuring considerable and complicated heterogeneity are …

Image fusion meets deep learning: A survey and perspective

H Zhang, H Xu, X Tian, J Jiang, J Ma - Information Fusion, 2021 - Elsevier
Image fusion, which refers to extracting and then combining the most meaningful information
from different source images, aims to generate a single image that is more informative and …

SwinFusion: Cross-domain long-range learning for general image fusion via swin transformer

J Ma, L Tang, F Fan, J Huang, X Mei… - IEEE/CAA Journal of …, 2022 - ieeexplore.ieee.org
This study proposes a novel general image fusion framework based on cross-domain long-
range learning and Swin Transformer, termed as SwinFusion. On the one hand, an attention …

SDNet: A versatile squeeze-and-decomposition network for real-time image fusion

H Zhang, J Ma - International Journal of Computer Vision, 2021 - Springer
In this paper, a squeeze-and-decomposition network (SDNet) is proposed to realize multi-
modal and digital photography image fusion in real time. Firstly, we generally transform …

Current advances and future perspectives of image fusion: A comprehensive review

S Karim, G Tong, J Li, A Qadir, U Farooq, Y Yu - Information Fusion, 2023 - Elsevier
Multiple imaging modalities can be combined to provide more information about the real
world than a single modality alone. Infrared images discriminate targets with respect to their …

A review of multimodal image matching: Methods and applications

X Jiang, J Ma, G **ao, Z Shao, X Guo - Information Fusion, 2021 - Elsevier
Multimodal image matching, which refers to identifying and then corresponding the same or
similar structure/content from two or more images that are of significant modalities or …

GANMcC: A generative adversarial network with multiclassification constraints for infrared and visible image fusion

J Ma, H Zhang, Z Shao, P Liang… - IEEE Transactions on …, 2020 - ieeexplore.ieee.org
Visible images contain rich texture information, whereas infrared images have significant
contrast. It is advantageous to combine these two kinds of information into a single image so …

Machine learning in pansharpening: A benchmark, from shallow to deep networks

LJ Deng, G Vivone, ME Paoletti… - … and Remote Sensing …, 2022 - ieeexplore.ieee.org
Machine learning (ML) is influencing the literature in several research fields, often through
state-of-the-art approaches. In the past several years, ML has been explored for …

Spatial-frequency domain information integration for pan-sharpening

M Zhou, J Huang, K Yan, H Yu, X Fu, A Liu… - European conference on …, 2022 - Springer
Pan-sharpening aims to generate high-resolution multi-spectral (MS) images by fusing PAN
images and low-resolution MS images. Despite its great advances, most existing pan …

[HTML][HTML] NCGLF2: Network combining global and local features for fusion of multisource remote sensing data

B Tu, Q Ren, J Li, Z Cao, Y Chen, A Plaza - Information fusion, 2024 - Elsevier
The fusion of multisource remote sensing (RS) data has demonstrated significant potential in
target recognition and classification tasks. However, there is limited emphasis on capturing …