Foundation models for generalist medical artificial intelligence

M Moor, O Banerjee, ZSH Abad, HM Krumholz… - Nature, 2023 - nature.com
The exceptionally rapid development of highly flexible, reusable artificial intelligence (AI)
models is likely to usher in newfound capabilities in medicine. We propose a new paradigm …

A comprehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt

Y Cao, S Li, Y Liu, Z Yan, Y Dai, PS Yu… - arxiv preprint arxiv …, 2023 - arxiv.org
Recently, ChatGPT, along with DALL-E-2 and Codex, has been gaining significant attention
from society. As a result, many individuals have become interested in related resources and …

Segment anything

A Kirillov, E Mintun, N Ravi, H Mao… - Proceedings of the …, 2023 - openaccess.thecvf.com
Abstract We introduce the Segment Anything (SA) project: a new task, model, and dataset for
image segmentation. Using our efficient model in a data collection loop, we built the largest …

Grounding dino: Marrying dino with grounded pre-training for open-set object detection

S Liu, Z Zeng, T Ren, F Li, H Zhang, J Yang… - … on Computer Vision, 2024 - Springer
In this paper, we develop an open-set object detector, called Grounding DINO, by marrying
Transformer-based detector DINO with grounded pre-training, which can detect arbitrary …

Yolov9: Learning what you want to learn using programmable gradient information

CY Wang, IH Yeh, HY Mark Liao - European conference on computer …, 2024 - Springer
Today's deep learning methods focus on how to design the objective functions to make the
prediction as close as possible to the target. Meanwhile, an appropriate neural network …

Run, don't walk: chasing higher FLOPS for faster neural networks

J Chen, S Kao, H He, W Zhuo, S Wen… - Proceedings of the …, 2023 - openaccess.thecvf.com
To design fast neural networks, many works have been focusing on reducing the number of
floating-point operations (FLOPs). We observe that such reduction in FLOPs, however, does …

Biformer: Vision transformer with bi-level routing attention

L Zhu, X Wang, Z Ke, W Zhang… - Proceedings of the …, 2023 - openaccess.thecvf.com
As the core building block of vision transformers, attention is a powerful tool to capture long-
range dependency. However, such power comes at a cost: it incurs a huge computation …

SpectralGPT: Spectral remote sensing foundation model

D Hong, B Zhang, X Li, Y Li, C Li, J Yao… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
The foundation model has recently garnered significant attention due to its potential to
revolutionize the field of visual representation learning in a self-supervised manner. While …

Visionllm: Large language model is also an open-ended decoder for vision-centric tasks

W Wang, Z Chen, X Chen, J Wu… - Advances in …, 2024 - proceedings.neurips.cc
Large language models (LLMs) have notably accelerated progress towards artificial general
intelligence (AGI), with their impressive zero-shot capacity for user-tailored tasks, endowing …

Open-vocabulary panoptic segmentation with text-to-image diffusion models

J Xu, S Liu, A Vahdat, W Byeon… - Proceedings of the …, 2023 - openaccess.thecvf.com
We present ODISE: Open-vocabulary DIffusion-based panoptic SEgmentation, which unifies
pre-trained text-image diffusion and discriminative models to perform open-vocabulary …