Scientific discovery in the age of artificial intelligence

H Wang, T Fu, Y Du, W Gao, K Huang, Z Liu… - Nature, 2023 - nature.com
Artificial intelligence (AI) is being increasingly integrated into scientific discovery to augment
and accelerate research, hel** scientists to generate hypotheses, design experiments …

The evolution of distributed systems for graph neural networks and their origin in graph processing and deep learning: A survey

J Vatter, R Mayer, HA Jacobsen - ACM Computing Surveys, 2023 - dl.acm.org
Graph neural networks (GNNs) are an emerging research field. This specialized deep
neural network architecture is capable of processing graph structured data and bridges the …

Camel: Communicative agents for" mind" exploration of large language model society

G Li, H Hammoud, H Itani… - Advances in Neural …, 2023 - proceedings.neurips.cc
The rapid advancement of chat-based language models has led to remarkable progress in
complex task-solving. However, their success heavily relies on human input to guide the …

Datacomp: In search of the next generation of multimodal datasets

SY Gadre, G Ilharco, A Fang… - Advances in …, 2023 - proceedings.neurips.cc
Multimodal datasets are a critical component in recent breakthroughs such as CLIP, Stable
Diffusion and GPT-4, yet their design does not receive the same research attention as model …

Explainability for large language models: A survey

H Zhao, H Chen, F Yang, N Liu, H Deng, H Cai… - ACM Transactions on …, 2024 - dl.acm.org
Large language models (LLMs) have demonstrated impressive capabilities in natural
language processing. However, their internal mechanisms are still unclear and this lack of …

A survey of machine unlearning

TT Nguyen, TT Huynh, Z Ren, PL Nguyen… - arxiv preprint arxiv …, 2022 - arxiv.org
Today, computer systems hold large amounts of personal data. Yet while such an
abundance of data allows breakthroughs in artificial intelligence, and especially machine …

Advances, challenges and opportunities in creating data for trustworthy AI

W Liang, GA Tadesse, D Ho, L Fei-Fei… - Nature Machine …, 2022 - nature.com
As artificial intelligence (AI) transitions from research to deployment, creating the appropriate
datasets and data pipelines to develop and evaluate AI models is increasingly the biggest …

Counterfactual explanations and how to find them: literature review and benchmarking

R Guidotti - Data Mining and Knowledge Discovery, 2024 - Springer
Interpretable machine learning aims at unveiling the reasons behind predictions returned by
uninterpretable classifiers. One of the most valuable types of explanation consists of …

Trustworthy artificial intelligence: a review

D Kaur, S Uslu, KJ Rittichier, A Durresi - ACM computing surveys (CSUR …, 2022 - dl.acm.org
Artificial intelligence (AI) and algorithmic decision making are having a profound impact on
our daily lives. These systems are vastly used in different high-stakes applications like …

Data-efficient Fine-tuning for LLM-based Recommendation

X Lin, W Wang, Y Li, S Yang, F Feng, Y Wei… - Proceedings of the 47th …, 2024 - dl.acm.org
Leveraging Large Language Models (LLMs) for recommendation has recently garnered
considerable attention, where fine-tuning plays a key role in LLMs' adaptation. However, the …