Artificial intelligence for multimodal data integration in oncology

J Lipkova, RJ Chen, B Chen, MY Lu, M Barbieri… - Cancer cell, 2022 - cell.com
In oncology, the patient state is characterized by a whole spectrum of modalities, ranging
from radiology, histology, and genomics to electronic health records. Current artificial …

Artificial intelligence in histopathology: enhancing cancer research and clinical oncology

A Shmatko, N Ghaffari Laleh, M Gerstung, JN Kather - Nature cancer, 2022 - nature.com
Artificial intelligence (AI) methods have multiplied our capabilities to extract quantitative
information from digital histopathology images. AI is expected to reduce workload for human …

A multimodal generative AI copilot for human pathology

MY Lu, B Chen, DFK Williamson, RJ Chen, M Zhao… - Nature, 2024 - nature.com
Computational pathology, has witnessed considerable progress in the development of both
task-specific predictive models and task-agnostic self-supervised vision encoders …

Towards a general-purpose foundation model for computational pathology

RJ Chen, T Ding, MY Lu, DFK Williamson, G Jaume… - Nature Medicine, 2024 - nature.com
Quantitative evaluation of tissue images is crucial for computational pathology (CPath) tasks,
requiring the objective characterization of histopathological entities from whole-slide images …

A pathology foundation model for cancer diagnosis and prognosis prediction

X Wang, J Zhao, E Marostica, W Yuan, J **, J Zhang… - Nature, 2024 - nature.com
Histopathology image evaluation is indispensable for cancer diagnoses and subtype
classification. Standard artificial intelligence methods for histopathology image analyses …

Deep learning in cancer diagnosis, prognosis and treatment selection

KA Tran, O Kondrashova, A Bradley, ED Williams… - Genome Medicine, 2021 - Springer
Deep learning is a subdiscipline of artificial intelligence that uses a machine learning
technique called artificial neural networks to extract patterns and make predictions from …

Harnessing multimodal data integration to advance precision oncology

KM Boehm, P Khosravi, R Vanguri, J Gao… - Nature Reviews …, 2022 - nature.com
Advances in quantitative biomarker development have accelerated new forms of data-driven
insights for patients with cancer. However, most approaches are limited to a single mode of …

Deep learning in histopathology: the path to the clinic

J Van der Laak, G Litjens, F Ciompi - Nature medicine, 2021 - nature.com
Abstract Machine learning techniques have great potential to improve medical diagnostics,
offering ways to improve accuracy, reproducibility and speed, and to ease workloads for …

Spatial biology of cancer evolution

Z Seferbekova, A Lomakin, LR Yates… - Nature Reviews …, 2023 - nature.com
The natural history of cancers can be understood through the lens of evolution given that the
driving forces of cancer development are mutation and selection of fitter clones. Cancer …

A visual-language foundation model for computational pathology

MY Lu, B Chen, DFK Williamson, RJ Chen, I Liang… - Nature Medicine, 2024 - nature.com
The accelerated adoption of digital pathology and advances in deep learning have enabled
the development of robust models for various pathology tasks across a diverse array of …