K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data

AM Ikotun, AE Ezugwu, L Abualigah, B Abuhaija… - Information …, 2023 - Elsevier
Advances in recent techniques for scientific data collection in the era of big data allow for the
systematic accumulation of large quantities of data at various data-capturing sites. Similarly …

All one needs to know about metaverse: A complete survey on technological singularity, virtual ecosystem, and research agenda

LH Lee, T Braud, PY Zhou, L Wang… - … and trends® in …, 2024 - nowpublishers.com
Since the popularisation of the Internet in the 1990s, the cyberspace has kept evolving. We
have created various computer-mediated virtual environments, including social networks …

Inferring super-resolution tissue architecture by integrating spatial transcriptomics with histology

D Zhang, A Schroeder, H Yan, H Yang, J Hu… - Nature …, 2024 - nature.com
Spatial transcriptomics (ST) has demonstrated enormous potential for generating intricate
molecular maps of cells within tissues. Here we present iStar, a method based on …

Machine learning in aerodynamic shape optimization

J Li, X Du, JRRA Martins - Progress in Aerospace Sciences, 2022 - Elsevier
Abstract Machine learning (ML) has been increasingly used to aid aerodynamic shape
optimization (ASO), thanks to the availability of aerodynamic data and continued …

Stop using the elbow criterion for k-means and how to choose the number of clusters instead

E Schubert - ACM SIGKDD Explorations Newsletter, 2023 - dl.acm.org
A major challenge when using k-means clustering often is how to choose the parameter k,
the number of clusters. In this letter, we want to point out that it is very easy to draw poor …

Edge intelligence: Empowering intelligence to the edge of network

D Xu, T Li, Y Li, X Su, S Tarkoma, T Jiang… - Proceedings of the …, 2021 - ieeexplore.ieee.org
Edge intelligence refers to a set of connected systems and devices for data collection,
caching, processing, and analysis proximity to where data are captured based on artificial …

Machine learning-enabled iot security: Open issues and challenges under advanced persistent threats

Z Chen, J Liu, Y Shen, M Simsek, B Kantarci… - ACM Computing …, 2022 - dl.acm.org
Despite its technological benefits, the Internet of Things (IoT) has cyber weaknesses due to
vulnerabilities in the wireless medium. Machine Larning (ML)-based methods are widely …

Unleashing unlabeled data: A paradigm for cross-view geo-localization

G Li, M Qian, GS **a - … of the IEEE/CVF Conference on …, 2024 - openaccess.thecvf.com
This paper investigates the effective utilization of unlabeled data for large-area cross-view
geo-localization (CVGL) encompassing both unsupervised and semi-supervised settings …

[PDF][PDF] Taking human out of learning applications: A survey on automated machine learning

Q Yao, M Wang, Y Chen, W Dai, YF Li… - arxiv preprint arxiv …, 2018 - academia.edu
Machine learning techniques have deeply rooted in our everyday life. However, since it is
knowledge-and labor-intensive to pursue good learning performance, humans are heavily …

Automated algorithm selection: Survey and perspectives

P Kerschke, HH Hoos, F Neumann… - Evolutionary …, 2019 - ieeexplore.ieee.org
It has long been observed that for practically any computational problem that has been
intensely studied, different instances are best solved using different algorithms. This is …