Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A comprehensive survey on pretrained foundation models: A history from bert to chatgpt
Abstract Pretrained Foundation Models (PFMs) are regarded as the foundation for various
downstream tasks across different data modalities. A PFM (eg, BERT, ChatGPT, GPT-4) is …
downstream tasks across different data modalities. A PFM (eg, BERT, ChatGPT, GPT-4) is …
A comprehensive survey on deep graph representation learning
Graph representation learning aims to effectively encode high-dimensional sparse graph-
structured data into low-dimensional dense vectors, which is a fundamental task that has …
structured data into low-dimensional dense vectors, which is a fundamental task that has …
Graphprompt: Unifying pre-training and downstream tasks for graph neural networks
Graphs can model complex relationships between objects, enabling a myriad of Web
applications such as online page/article classification and social recommendation. While …
applications such as online page/article classification and social recommendation. While …
Graphmae: Self-supervised masked graph autoencoders
Self-supervised learning (SSL) has been extensively explored in recent years. Particularly,
generative SSL has seen emerging success in natural language processing and other …
generative SSL has seen emerging success in natural language processing and other …
Hypergraph contrastive collaborative filtering
Collaborative Filtering (CF) has emerged as fundamental paradigms for parameterizing
users and items into latent representation space, with their correlative patterns from …
users and items into latent representation space, with their correlative patterns from …
Mind the gap: Understanding the modality gap in multi-modal contrastive representation learning
We present modality gap, an intriguing geometric phenomenon of the representation space
of multi-modal models. Specifically, we show that different data modalities (eg images and …
of multi-modal models. Specifically, we show that different data modalities (eg images and …
Self-supervised learning for recommender systems: A survey
In recent years, neural architecture-based recommender systems have achieved
tremendous success, but they still fall short of expectation when dealing with highly sparse …
tremendous success, but they still fall short of expectation when dealing with highly sparse …
Graph neural networks: foundation, frontiers and applications
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …
recent years. Graph neural networks, also known as deep learning on graphs, graph …
Gppt: Graph pre-training and prompt tuning to generalize graph neural networks
Despite the promising representation learning of graph neural networks (GNNs), the
supervised training of GNNs notoriously requires large amounts of labeled data from each …
supervised training of GNNs notoriously requires large amounts of labeled data from each …
Data augmentation for deep graph learning: A survey
Graph neural networks, a powerful deep learning tool to model graph-structured data, have
demonstrated remarkable performance on numerous graph learning tasks. To address the …
demonstrated remarkable performance on numerous graph learning tasks. To address the …