A comprehensive survey on recent metaheuristics for feature selection

T Dokeroglu, A Deniz, HE Kiziloz - Neurocomputing, 2022 - Elsevier
Feature selection has become an indispensable machine learning process for data
preprocessing due to the ever-increasing sizes in actual data. There have been many …

[HTML][HTML] Recent advances in electrochemical biosensors: Applications, challenges, and future scope

A Singh, A Sharma, A Ahmed, AK Sundramoorthy… - Biosensors, 2021 - mdpi.com
The electrochemical biosensors are a class of biosensors which convert biological
information such as analyte concentration that is a biological recognition element …

Graphmae: Self-supervised masked graph autoencoders

Z Hou, X Liu, Y Cen, Y Dong, H Yang, C Wang… - Proceedings of the 28th …, 2022 - dl.acm.org
Self-supervised learning (SSL) has been extensively explored in recent years. Particularly,
generative SSL has seen emerging success in natural language processing and other …

Distance-based support vector machine to predict DNA N6-methyladenine modification

H Zhang, Q Zou, Y Ju, C Song, D Chen - Current Bioinformatics, 2022 - ingentaconnect.com
Background: DNA N6-methyladenine plays an important role in the restriction-modification
system to isolate invasion from adventive DNA. The shortcomings of the high time …

Rethinking graph neural networks for anomaly detection

J Tang, J Li, Z Gao, J Li - International Conference on …, 2022 - proceedings.mlr.press
Abstract Graph Neural Networks (GNNs) are widely applied for graph anomaly detection. As
one of the key components for GNN design is to select a tailored spectral filter, we take the …

[HTML][HTML] Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction

D Markovics, MJ Mayer - Renewable and Sustainable Energy Reviews, 2022 - Elsevier
The increase of the worldwide installed photovoltaic (PV) capacity and the intermittent
nature of the solar resource highlights the importance of power forecasting for the grid …

Artificial intelligence in E-Commerce: a bibliometric study and literature review

RE Bawack, SF Wamba, KDA Carillo, S Akter - Electronic markets, 2022 - Springer
This paper synthesises research on artificial intelligence (AI) in e-commerce and proposes
guidelines on how information systems (IS) research could contribute to this research …

Power of data in quantum machine learning

HY Huang, M Broughton, M Mohseni… - Nature …, 2021 - nature.com
The use of quantum computing for machine learning is among the most exciting prospective
applications of quantum technologies. However, machine learning tasks where data is …

Chromatin profiles classify castration-resistant prostate cancers suggesting therapeutic targets

F Tang, D Xu, S Wang, CK Wong… - Science, 2022 - science.org
In castration-resistant prostate cancer (CRPC), the loss of androgen receptor (AR)
dependence leads to clinically aggressive tumors with few therapeutic options. We used …

Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0

ZM Çınar, A Abdussalam Nuhu, Q Zeeshan, O Korhan… - Sustainability, 2020 - mdpi.com
Recently, with the emergence of Industry 4.0 (I4. 0), smart systems, machine learning (ML)
within artificial intelligence (AI), predictive maintenance (PdM) approaches have been …