Heterogeneous federated learning: State-of-the-art and research challenges

M Ye, X Fang, B Du, PC Yuen, D Tao - ACM Computing Surveys, 2023 - dl.acm.org
Federated learning (FL) has drawn increasing attention owing to its potential use in large-
scale industrial applications. Existing FL works mainly focus on model homogeneous …

A state-of-the-art survey on solving non-iid data in federated learning

X Ma, J Zhu, Z Lin, S Chen, Y Qin - Future Generation Computer Systems, 2022 - Elsevier
Federated Learning (FL) proposed in recent years has received significant attention from
researchers in that it can enable multiple clients to cooperatively train global models without …

Federated learning on non-IID data: A survey

H Zhu, J Xu, S Liu, Y ** - Neurocomputing, 2021 - Elsevier
Federated learning is an emerging distributed machine learning framework for privacy
preservation. However, models trained in federated learning usually have worse …

Federated learning from pre-trained models: A contrastive learning approach

Y Tan, G Long, J Ma, L Liu, T Zhou… - Advances in neural …, 2022 - proceedings.neurips.cc
Federated Learning (FL) is a machine learning paradigm that allows decentralized clients to
learn collaboratively without sharing their private data. However, excessive computation and …

Towards personalized federated learning

AZ Tan, H Yu, L Cui, Q Yang - IEEE transactions on neural …, 2022 - ieeexplore.ieee.org
In parallel with the rapid adoption of artificial intelligence (AI) empowered by advances in AI
research, there has been growing awareness and concerns of data privacy. Recent …

Distributed learning in wireless networks: Recent progress and future challenges

M Chen, D Gündüz, K Huang, W Saad… - IEEE Journal on …, 2021 - ieeexplore.ieee.org
The next-generation of wireless networks will enable many machine learning (ML) tools and
applications to efficiently analyze various types of data collected by edge devices for …

Ditto: Fair and robust federated learning through personalization

T Li, S Hu, A Beirami, V Smith - International conference on …, 2021 - proceedings.mlr.press
Fairness and robustness are two important concerns for federated learning systems. In this
work, we identify that robustness to data and model poisoning attacks and fairness …

Fedproto: Federated prototype learning across heterogeneous clients

Y Tan, G Long, L Liu, T Zhou, Q Lu, J Jiang… - Proceedings of the …, 2022 - ojs.aaai.org
Heterogeneity across clients in federated learning (FL) usually hinders the optimization
convergence and generalization performance when the aggregation of clients' knowledge …

Layer-wised model aggregation for personalized federated learning

X Ma, J Zhang, S Guo, W Xu - Proceedings of the IEEE/CVF …, 2022 - openaccess.thecvf.com
Abstract Personalized Federated Learning (pFL) not only can capture the common priors
from broad range of distributed data, but also support customized models for heterogeneous …

A survey on security and privacy of federated learning

V Mothukuri, RM Parizi, S Pouriyeh, Y Huang… - Future Generation …, 2021 - Elsevier
Federated learning (FL) is a new breed of Artificial Intelligence (AI) that builds upon
decentralized data and training that brings learning to the edge or directly on-device. FL is a …